Vertically aligned crystalline silicon nanowires with controlled diameters for energy conversion applications: Experimental and theoretical insights

Vertically orientated single crystalline silicon nanowire (SiNW) arrays with controlled diameters are fabricated via a metal-assisted chemical etching method. The diameter of the fabricated nanowires is controlled by simply varying the etching time in HF/H2O2 electrolytes. The fabricated SiNWs have diameters ranging from 117 to 650 nm and lengths from 8 to 18 μm. The optical measurements showed a significant difference in the reflectance/absorption of the SiNWs with different diameters, where the reflectance increases with increasing the diameter of the SiNWs. The SiNWs showed significant photoluminescence (PL) emission spectra with peaks lying between 380 and 670 nm. The PL intensity increases as the diameter increases and shows red shift for peaks at ∼670 nm. The increase or decrease of reflectivity is coincident with PL intensity at wavelength ∼660 nm. The x-ray diffraction patterns confirm the high crystallinity of the fabricated SiNWs. In addition, the Raman spectra showed a shift in the first order ...

[1]  Z. Ren,et al.  Investigation of Li-doped ferroelectric and piezoelectric ZnO films by electric force microscopy and Raman spectroscopy , 2001 .

[2]  Takeda,et al.  Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials. , 1992, Physical review. B, Condensed matter.

[3]  Maeda,et al.  Visible photoluminescence from nanocrystallite Ge embedded in a glassy SiO2 matrix: Evidence in support of the quantum-confinement mechanism. , 1995, Physical review. B, Condensed matter.

[4]  Kong Liu,et al.  Improved photovoltaic performance of silicon nanowire/organic hybrid solar cells by incorporating silver nanoparticles , 2013, Nanoscale Research Letters.

[5]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[6]  Ning Wang,et al.  Silicon nanowires prepared by laser ablation at high temperature , 1998 .

[7]  Chunhai Fan,et al.  Silicon nanostructures for bioapplications , 2010 .

[8]  Vijay A. Singh,et al.  EFFECTIVE EXPONENT FOR THE SIZE DEPENDENCE OF LUMINESCENCE IN SEMICONDUCTOR NANOCRYSTALLITES , 1998 .

[9]  Peidong Yang,et al.  Silicon nanowire radial p-n junction solar cells. , 2008, Journal of the American Chemical Society.

[10]  H. Morkoç,et al.  Raman scattering and photoluminescence of Mg-doped GaN films grown by molecular beam epitaxy , 1997 .

[11]  George C. John,et al.  Porous silicon: theoretical studies , 1995 .

[12]  Kanemitsu Luminescence properties of nanometer-sized Si crystallites: Core and surface states. , 1994, Physical review. B, Condensed matter.

[13]  Búda,et al.  Optical properties of porous silicon: A first-principles study. , 1992, Physical review letters.

[14]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[15]  Charles M. Lieber,et al.  Nanowire-based biosensors. , 2006, Analytical chemistry.

[16]  Hui Fang,et al.  Metal-particle-induced, highly localized site-specific etching of Si and formation of single-crystalline Si nanowires in aqueous fluoride solution. , 2006, Chemistry.

[17]  Joshua M. Pearce,et al.  Optimization of open circuit voltage in amorphous silicon solar cells with mixed-phase "amorphous+nanocrystalline… p-type contacts of low nanocrystalline content , 2007 .

[18]  J. Robertson,et al.  Raman Spectrum of silicon nanowires , 2003 .

[19]  R. M. Tromp,et al.  The influence of the surface migration of gold on the growth of silicon nanowires , 2006, Nature.

[20]  Min-Yi Shih,et al.  Strong broadband optical absorption in silicon nanowire films , 2007 .

[21]  Zhao,et al.  Quantum confinement in nanometer-sized silicon crystallites. , 1994, Physical review. B, Condensed matter.

[22]  T. Shimizu,et al.  Bottom‐Imprint Method for VSS Growth of Epitaxial Silicon Nanowire Arrays with an Aluminium Catalyst , 2009 .

[23]  B. Bessais,et al.  Porous silicon/NaOH texturization surface treatment of crystalline silicon for solar cells , 2013 .

[24]  Sai T. Chu,et al.  A finite-difference time-domain method for the design and analysis of guided-wave optical structures , 1989 .

[25]  Hybertsen,et al.  Absorption and emission of light in nanoscale silicon structures. , 1994, Physical review letters.

[26]  Shu‐Lin Zhang,et al.  Raman spectral study of silicon nanowires , 1999 .

[27]  Peidong Yang,et al.  Direct Observation of Vapor-Liquid-Solid Nanowire Growth , 2001 .

[28]  Junshuai Li,et al.  Solar energy harnessing in hexagonally arranged Si nanowire arrays and effects of array symmetry on optical characteristics , 2012, Nanotechnology.

[29]  Xinjian Li,et al.  Quantum confinement in porous silicon , 2000 .

[30]  Henry I. Smith,et al.  Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching. , 2008, Nano letters.

[31]  S S Saini,et al.  Silicon nanowire arrays with enhanced optical properties. , 2012, Optics letters.

[32]  D. D. D. Ma,et al.  Strong polarization-dependent photoluminescence from silicon nanowire fibers , 2005 .

[33]  J. S. Fu,et al.  DIRECT EVIDENCE OF QUANTUM CONFINEMENT FROM THE SIZE DEPENDENCE OF THE PHOTOLUMINESCENCE OF SILICON QUANTUM WIRES , 1999 .

[34]  R. Das,et al.  Optical properties of linoleic acid protected gold nanoparticles , 2011 .

[35]  Zongfu Yu,et al.  Hybrid silicon nanocone-polymer solar cells. , 2012, Nano letters.

[36]  Zhongyi Guo,et al.  Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics. , 2011, Optics express.

[37]  Chang,et al.  Theory of optical properties of quantum wires in porous silicon. , 1992, Physical review. B, Condensed matter.

[38]  Shui-Tong Lee,et al.  SiO2-enhanced synthesis of Si nanowires by laser ablation , 1998 .

[39]  Hongzhou Zhang,et al.  Dependence of the silicon nanowire diameter on ambient pressure , 1998 .

[40]  E. Pop,et al.  Impact of phonon-surface roughness scattering on thermal conductivity of thin si nanowires. , 2009, Physical review letters.

[41]  Baohua Zhang,et al.  Large‐Area Silver‐Coated Silicon Nanowire Arrays for Molecular Sensing Using Surface‐Enhanced Raman Spectroscopy , 2008 .

[42]  Nadine Geyer,et al.  Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching , 2010, Nanotechnology.

[43]  A. Panchal,et al.  Fabrication of silicon quantum dots in SiNx multilayer using hot-wire CVD , 2009 .

[44]  J. Linnros,et al.  Controlled fabrication of silicon nanowires by electron beam lithography and electrochemical size reduction. , 2005, Nano letters.

[45]  Xin Jian Li,et al.  Silicon nanoporous pillar array: a silicon hierarchical structure with high light absorption and triple-band photoluminescence. , 2008, Optics express.

[46]  A. Nassiopoulou,et al.  Si nanowires by a single-step metal-assisted chemical etching process on lithographically defined areas: formation kinetics , 2011, Nanoscale research letters.

[47]  N. Fang,et al.  Non-lithographic patterning and metal-assisted chemical etching for manufacturing of tunable light-emitting silicon nanowire arrays , 2010, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[48]  Ze Zhang,et al.  Raman spectral study of silicon nanowires: High-order scattering and phonon confinement effects , 2000 .

[49]  F. Audebert,et al.  Yttria and ceria doped zirconia thin films grown by pulsed laser deposition , 2013 .

[50]  Nageh K. Allam,et al.  Electrical Characterization of Nanopolyaniline/Porous Silicon Heterojunction at High Temperatures , 2013 .

[51]  K. Park,et al.  Investigation of surface features using reactive ion etching method for the enhanced performance of multi-crystalline silicon solar cells , 2013 .

[52]  H. Scheel,et al.  Electronic band structure of high‐index silicon nanowires , 2005 .

[53]  Zhongyi Guo,et al.  A strong antireflective solar cell prepared by tapering silicon nanowires. , 2010, Optics express.

[54]  Ashish Gupta,et al.  Optimization of band gap, thickness and carrier concentrations for the development of efficient microcrystalline silicon solar cells: A theoretical approach , 2013 .

[55]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[56]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .