An Effective Dynamic Current Phasor Estimator for Synchrophasor Measurements

Accurate voltage and current phasor measurements are required to be provided by phasor measurement units placed at various buses in the system. This paper presents an effective method for estimation of alternating current signal fundamental phasor under dynamic conditions. The model-order estimation of the current signal has been carried out to separate the signal space and the noise space in the signal correlation matrix. The Vandermonde matrix of the total least square estimation of signal parameters via rotational invariance techniques method is extended to second-order Taylor's series approximation to estimate the dynamic phasor of the current signal. The suggested technique for the phasor estimation has been tested on simultaneous multimode amplitude and phase oscillations with decaying dc offset and noninteger harmonics, in the presence of noise and also for a fault scenario in New England 39-bus system. This paper also provides a few suggestions for a few possible amendments in the IEEE synchrophasor standard.

[1]  Jyh-Cherng Gu,et al.  Removal of decaying DC in current and voltage signals using a modified Fourier filter algorithm , 2001 .

[2]  Tarlochan S. Sidhu,et al.  Discrete-Fourier-transform-based technique for removal of decaying DC offset from phasor estimates , 2003 .

[3]  José Antonio de la O. Serna,et al.  Synchrophasor Estimation Using Prony's Method , 2013, IEEE Transactions on Instrumentation and Measurement.

[4]  Ashutosh Sabharwal,et al.  A combined order selection and parameter estimation algorithm for undamped exponentials , 2000, IEEE Trans. Signal Process..

[5]  José Antonio de la O. Serna,et al.  Dynamic Phasor Estimates for Power System Oscillations , 2007, IEEE Transactions on Instrumentation and Measurement.

[6]  Zhao Yang Dong,et al.  An Adaptive Dynamic Phasor Estimator Considering DC Offset for PMU Applications , 2011, IEEE Transactions on Power Delivery.

[7]  A. Swindlehurst,et al.  Subspace-based signal analysis using singular value decomposition , 1993, Proc. IEEE.

[8]  Hector J. Altuve,et al.  FOURIER AND WALSH DIGITAL FILTERING ALGORITHMS FOR DISTANCE PROTECTION , 1996 .

[9]  Nachiket Kapre,et al.  Enhancing performance of Tall-Skinny QR factorization using FPGAs , 2012, 22nd International Conference on Field Programmable Logic and Applications (FPL).

[10]  José Antonio de la O. Serna,et al.  Taylor–Kalman–Fourier Filters for Instantaneous Oscillating Phasor and Harmonic Estimates , 2012, IEEE Transactions on Instrumentation and Measurement.

[11]  J. A. de la O Serna,et al.  Instantaneous Oscillating Phasor Estimates With Taylor$^K$-Kalman Filters , 2011, IEEE Transactions on Power Systems.

[12]  Y. Kang,et al.  Fourier Transform-Based Modified Phasor Estimation Method Immune to the Effect of the DC Offsets , 2009, IEEE Transactions on Power Delivery.

[13]  Mladen Kezunovic,et al.  Splified Algorithms for Removal of the Effect of Exponentially Decaying DC Offset on the Fourirer Algorithm , 2002, IEEE Power Engineering Review.

[14]  José Antonio de la O. Serna,et al.  Dynamic Harmonic Analysis Through Taylor–Fourier Transform , 2011, IEEE Transactions on Instrumentation and Measurement.

[15]  Dimitris G. Manolakis,et al.  Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering and Array Processing , 1999 .

[16]  Soon-Ryul Nam,et al.  Phasor Estimation in the Presence of DC Offset and CT Saturation , 2009, IEEE Transactions on Power Delivery.

[17]  Roland Badeau,et al.  High-resolution spectral analysis of mixtures of complex exponentials modulated by polynomials , 2006, IEEE Transactions on Signal Processing.

[18]  S. C. Srivastava,et al.  Robust Wide-Area TS Fuzzy Output Feedback Controller for Enhancement of Stability in Multimachine Power System , 2012, IEEE Systems Journal.

[19]  Sabine Van Huffel,et al.  A Shift Invariance-Based Order-Selection Technique for Exponential Data Modelling , 2007, IEEE Signal Processing Letters.

[20]  Jyh-Cherng Gu,et al.  Removal of DC offset in current and voltage signals using a novel Fourier filter algorithm , 2000 .

[21]  C. Yu A discrete Fourier transform-based adaptive mimic phasor estimator for distance relaying applications , 2006, IEEE Transactions on Power Delivery.

[22]  S. C. Srivastava,et al.  A Subspace-Based Dynamic Phasor Estimator for Synchrophasor Application , 2012, IEEE Transactions on Instrumentation and Measurement.

[23]  Thomas Kailath,et al.  ESPRIT-estimation of signal parameters via rotational invariance techniques , 1989, IEEE Trans. Acoust. Speech Signal Process..

[24]  S. N. Singh,et al.  Exact Model Order ESPRIT Technique for Harmonics and Interharmonics Estimation , 2012, IEEE Transactions on Instrumentation and Measurement.

[25]  S. C. Srivastava,et al.  Fast estimation of dynamic variations in voltage and current phasor for power system application , 2013, 2013 IEEE Power & Energy Society General Meeting.

[26]  Anthony J. Weiss,et al.  Estimating frequencies of exponentials in noise using joint diagonalization , 1999, IEEE Trans. Signal Process..

[27]  Magnus Sandell,et al.  Singular value decomposition using an array of CORDIC processors , 2014, Signal Process..

[28]  I. T. Castro,et al.  Bias of the Maximum Likelihood Doa Estimation from Inaccurate Knowledge of the Antenna Array Response , 2007 .

[29]  A. López-Parrado,et al.  Efficient systolic architecture for Hermitian eigenvalue problem , 2012, 2012 IEEE 4th Colombian Workshop on Circuits and Systems (CWCAS).

[30]  Tarlochan S. Sidhu,et al.  A Simple Synchrophasor Estimation Algorithm Considering IEEE Standard C37.118.1-2011 and Protection Requirements , 2013, IEEE Transactions on Instrumentation and Measurement.

[31]  Feng Ding,et al.  Model order determination using the Hankel matrix of impulse responses , 2011, Appl. Math. Lett..

[32]  Kit Po Wong,et al.  Dynamic Phasor and Frequency Estimators Considering Decaying DC Components , 2012, IEEE Transactions on Power Systems.

[33]  Gilsoo Jang,et al.  An Innovative Decaying DC Component Estimation Algorithm for Digital Relaying , 2009, IEEE Transactions on Power Delivery.

[34]  Gabriel Oksa,et al.  Efficient pre-processing in the parallel block-Jacobi SVD algorithm , 2006, Parallel Comput..