Functional Characterization of Oscillatory and Excitable Media

[1]  Michael W. Reimann,et al.  A Biophysically Detailed Model of Neocortical Local Field Potentials Predicts the Critical Role of Active Membrane Currents , 2013, Neuron.

[2]  Jonathan R. Karr,et al.  Towards a whole-cell modeling approach for synthetic biology. , 2013, Chaos.

[3]  Alfio Quarteroni,et al.  A vision and strategy for the virtual physiological human: 2012 update , 2013, Interface Focus.

[4]  Leon Glass,et al.  The Shape of Phase-Resetting Curves in Oscillators with a Saddle Node on an Invariant Circle Bifurcation , 2012, Neural Computation.

[5]  Natalia A Trayanova,et al.  A computational approach to understanding the cardiac electromechanical activation sequence in the normal and failing heart, with translation to the clinical practice of CRT. , 2012, Progress in biophysics and molecular biology.

[6]  A. Garfinkel,et al.  T-Wave Alternans and Arrhythmogenesis in Cardiac Diseases , 2010, Front. Physio..

[7]  T. Farid,et al.  Short-Term Memory and Restitution During Ventricular Fibrillation in Human Hearts: An In Vivo Study , 2009, Circulation. Arrhythmia and electrophysiology.

[8]  S. Hohnloser,et al.  The ABCD (Alternans Before Cardioverter Defibrillator) Trial: strategies using T-wave alternans to improve efficiency of sudden cardiac death prevention. , 2009, Journal of the American College of Cardiology.

[9]  Michael R Guevara,et al.  Phase resetting, phase locking, and bistability in the periodically driven saline oscillator: experiment and model. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Elizabeth M Cherry,et al.  Suppression of alternans and conduction blocks despite steep APD restitution: electrotonic, memory, and conduction velocity restitution effects. , 2004, American journal of physiology. Heart and circulatory physiology.

[11]  Daniel J Gauthier,et al.  Condition for alternans and stability of the 1:1 response pattern in a "memory" model of paced cardiac dynamics. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Peter Saunders The geometry of biological time (2nd edn), by Arthur T. Winfree. Pp. 777. £46.50. 2001 ISBN 0 387 98992 7 (Springer). , 2002, The Mathematical Gazette.

[13]  A. Garfinkel,et al.  Mechanisms of Discordant Alternans and Induction of Reentry in Simulated Cardiac Tissue , 2000, Circulation.

[14]  F. Fenton,et al.  Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. , 1998, Chaos.

[15]  R J Cohen,et al.  Predicting Sudden Cardiac Death From T Wave Alternans of the Surface Electrocardiogram: , 1996, Journal of cardiovascular electrophysiology.

[16]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[17]  Glass,et al.  Periodic forcing of a limit-cycle oscillator: Fixed points, Arnold tongues, and the global organization of bifurcations. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[18]  A. Karma Electrical alternans and spiral wave breakup in cardiac tissue. , 1994, Chaos.

[19]  J. Ruskin,et al.  Electrical alternans and vulnerability to ventricular arrhythmias. , 1994, The New England journal of medicine.

[20]  L. Glass,et al.  Instabilities of a propagating pulse in a ring of excitable media. , 1993, Physical review letters.

[21]  Alvin Shrier,et al.  The Topology of Phase Response Curves Induced by Single and Paired Stimuli in Spontaneously Oscillating Chick Heart Cell Aggregates , 1992, Journal of biological rhythms.

[22]  A. Winfree The geometry of biological time , 1991 .

[23]  L. Glass,et al.  Evolution of rhythms during periodic stimulation of embryonic chick heart cell aggregates. , 1991, Circulation research.

[24]  L. Glass,et al.  A unified model of atrioventricular nodal conduction predicts dynamic changes in Wenckebach periodicity. , 1991, Circulation research.

[25]  S. Strogatz,et al.  Synchronization of pulse-coupled biological oscillators , 1990 .

[26]  G. Ermentrout,et al.  Analysis of neural excitability and oscillations , 1989 .

[27]  S Nattel,et al.  Prediction of complex atrioventricular conduction rhythms in humans with use of the atrioventricular nodal recovery curve. , 1987, Circulation.

[28]  L Glass,et al.  Universal Bifurcations and the Classification of Cardiac Arrhythmias a , 1987, Annals of the New York Academy of Sciences.

[29]  L. Glass,et al.  Global bifurcations of a periodically forced biological oscillator , 1984 .

[30]  Benoit B. Mandelbrot,et al.  Fractal Geometry of Nature , 1984 .

[31]  D. Adam,et al.  Period multupling-evidence for nonlinear behaviour of the canine heart , 1984, Nature.

[32]  L. Glass,et al.  Phase locking, period-doubling bifurcations, and irregular dynamics in periodically stimulated cardiac cells. , 1981, Science.

[33]  James P. Keener,et al.  On cardiac arrythmias: AV conduction block , 1981 .

[34]  M. Feigenbaum Quantitative universality for a class of nonlinear transformations , 1978 .

[35]  J. Billette,et al.  Preceding His-atrial interval as a determinant of atrioventricular nodal conduction time in the human and rabbit heart. , 1976, The American journal of cardiology.

[36]  Robert M. May,et al.  Simple mathematical models with very complicated dynamics , 1976, Nature.

[37]  J. Yorke,et al.  Period Three Implies Chaos , 1975 .

[38]  M. N. Levy,et al.  The AV nodal Wenckebach phenomenon as a positive feedback mechanism. , 1974, Progress in cardiovascular diseases.

[39]  D. Griffeath,et al.  A mathematical model for first degree block and the Wenckebach phenomenon. , 1971, The Bulletin of mathematical biophysics.

[40]  A. Winfree,et al.  Integrated view of resetting a circadian clock. , 1970, Journal of theoretical biology.

[41]  J. Nolasco,et al.  A graphic method for the study of alternation in cardiac action potentials. , 1968, Journal of applied physiology.

[42]  T Pavlidis,et al.  A model for circadian clocks. , 1967, The Bulletin of mathematical biophysics.

[43]  E. Keller A mathematical description of biological clocks. , 1967, Currents in modern biology.

[44]  G. P. Moore,et al.  Pacemaker Neurons: Effects of Regularly Spaced Synaptic Input , 1964, Science.

[45]  G M Decherd,et al.  THE MECHANISM OF THE WENCKEBACH TYPE OF A-V BLOCK , 1946, British heart journal.

[46]  G. R. Mines On dynamic equilibrium in the heart , 1913, The Journal of physiology.

[47]  C. Eliasmith,et al.  Supplementary Materials for A Large-Scale Model of the Functioning Brain , 2012 .

[48]  Robert J. Butera,et al.  Phase Response Curves in Neuroscience , 2012, Springer Series in Computational Neuroscience.

[49]  Robert J. Butera,et al.  Comprar Phase Response Curves In Neuroscience. Theory, Experiment And Analysis (Springer Series In Computational Neuroscience, Vol. 6) | Robert J. Butera | 9781461407386 | Springer , 2012 .

[50]  Trine Krogh-Madsen,et al.  Phase Resetting Neural Oscillators: Topological Theory Versus the RealWorld , 2012 .

[51]  Bruce H. Smaill,et al.  Computer Modeling of Electrical Activation: From Cellular Dynamics to the Whole Heart , 2010 .

[52]  N. B. Strydom,et al.  The influence of boot weight on the energy expenditure of men walking on a treadmill and climbing steps , 2004, Internationale Zeitschrift für angewandte Physiologie einschließlich Arbeitsphysiologie.

[53]  M. Guevara Iteration of the Human Atrioventricular (AV) Nodal Recovery Curve Predicts Many Rhythms of AV Block , 1991 .

[54]  L. Glass,et al.  From Clocks to Chaos: The Rhythms of Life , 1988 .

[55]  L Glass,et al.  Global bifurcations of a periodically forced nonlinear oscillator , 1984, Journal of mathematical biology.

[56]  Vladimir Igorevich Arnold,et al.  Geometrical Methods in the Theory of Ordinary Differential Equations , 1983 .

[57]  J. Keener,et al.  Phase locking of biological clocks , 1982, Journal of mathematical biology.

[58]  L Glass,et al.  Phase locking, period doubling bifurcations and chaos in a mathematical model of a periodically driven oscillator: A theory for the entrainment of biological oscillators and the generation of cardiac dysrhythmias , 1982, Journal of mathematical biology.

[59]  Theodosios Pavlidis,et al.  Biological Oscillators: Their Mathematical Analysis , 1973 .

[60]  G. P. Moore,et al.  PACEMAKER NEURONS: EFFECTS OF REGULARLY SPACED SYNAPTIC INPUT. , 1964, Science.

[61]  R. Wever Possibilities of phase-control, demonstrated by an electronic model. , 1960, Cold Spring Harbor symposia on quantitative biology.

[62]  C. Pittendrigh,et al.  Circadian rhythms and the circadian organization of living systems. , 1960, Cold Spring Harbor symposia on quantitative biology.

[63]  N. Levinson,et al.  A Second Order Differential Equation with Singular Solutions , 1949 .