Further evidence for a variable fine-structure constant from Keck/HIRES QSO absorption spectra

We have previously presented evidence for a varying fine-str ucture constant, α, in two independent samples of Keck/HIRES QSO absorption spectra. Here we present a detailed manymultiplet analysis of a third Keck/HIRES sample containing 78 absorption systems. We also re-analyse the previous samples, providing a total of 128 absorption systems over the redshift range 0.2 < zabs < 3.7. The results, with raw statistical errors, indicate a small er weighted mean α in the absorption clouds: �α/α = ( 0.574 ± 0.102) × 10 5 . All three samples separately yield consistent and significant values of �α/α. The analyses of low-z (i.e. zabs < 1.8) and high-z systems rely on different ions and transitions with very different dependencies on α, yet they also give consistent results. We identify an addit ional source of random error in 22 high-z systems characterized by transitions with a large dynamic range in apparent optical depth. Increasing the statistical erro rs on �α/α for these systems gives our fiducial result, a weighted mean �α/α = ( 0.543 ± 0.116) × 10 5 , representing 4.7 σ evidence for a varying α. Assuming that �α/α = 0 at zabs = 0, the data marginally prefer a linear increase in α with time rather than a constant offset from the laboratory value: u α/α = (6.40 ± 1.35) × 10 16 yr 1 . The two-point correlation function for α is consistent with zero over 0.2‐13 Gpc comoving scales and the angular distribution of �α/α shows no significant dipolar anisotropy. We therefore have no eviden ce for spatial variations in �α/α. We extend our previous searches for possible systematic errors, giving detailed analyses of potential kinematic effects, line blending, wavelength miscalibration, spectrograph temperature variations, atmospheric dispersion and isotopic /hyperfine structure effects. The latter two are potentially the most significant. However, overall, known systematic errors do not explain the results. Future many-multiplet analyses of indep endent QSO spectra from different telescopes and spectrographs will provide a now crucial check on our Keck/HIRES results.

[1]  M. Murphy,et al.  Relativistic Corrections in Atoms and Space-Time Variation of the Fine Structure Constant , 2001 .

[2]  Rory A. Fisher,et al.  Statistical Methods for Research Workers. , 1956 .

[3]  The Kinematics of Intermediate-Redshift Mg II Absorbers , 2001, astro-ph/0106006.

[4]  D. Morton Atomic data for resonance absorption lines. I, Wavelengths longward of the Lyman limit , 1991 .

[5]  The Oklo bound on the time variation of the fine-structure constant revisited , 1996, hep-ph/9606486.

[6]  B. Edĺen The Refractive Index of Air , 1966 .

[7]  W. V. Breugel,et al.  The Hy-Redshift Universe: Galaxy Formation and Evolution at High Redshift , 1999 .

[8]  P. Petitjean,et al.  Do the fundamental constants vary in the course of cosmological evolution? , 2001, astro-ph/0112323.

[9]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[10]  John N. Bahcall,et al.  An Analysis of the Absorption Spectrum of 3c 191 , 1967 .

[11]  G. Herbig The diffuse interstellar bands. IV. The region 4400--6850 A , 1975 .

[12]  Ionized Gas in Damped Lyα Protogalaxies. II. Comparison between Models and the Kinematic Data , 2000, astro-ph/0009082.

[13]  S. Andrews,et al.  Small-Scale Interstellar Na I Structure toward M92 , 2001, astro-ph/0104028.

[14]  L. Hallstadius Extended measurements of isotope shifts in Mg I , 1979 .

[15]  A. Fabian,et al.  Damped Lyα absorbers from dwarf galaxy ejecta , 1998 .

[16]  R. C. Weast Handbook of chemistry and physics , 1973 .

[17]  F. Dyson Time Variation of the Charge of the Proton , 1967 .

[18]  P. D. P. Taylor,et al.  Isotopic Compositions of the Elements 1997 , 1998 .

[19]  Gillian Nave,et al.  Precision Fe i and Fe ii wavelengths in the ultraviolet spectrum of the iron–neon hollow-cathode lamp , 1991 .

[20]  M. Kaplinghat,et al.  Constraining variations in the fine structure constant with the cosmic microwave background , 1998, astro-ph/9810133.

[21]  K. Olive,et al.  Constraints on the variations of the fundamental couplings , 2002, hep-ph/0205269.

[22]  J. Prochaska,et al.  Possible evidence for a variable fine-structure constant from QSO absorption lines: systematic errors , 2000, astro-ph/0012420.

[23]  NEW LIMITS ON THE POSSIBLE VARIATION OF PHYSICAL CONSTANTS , 1997, astro-ph/9711290.

[24]  R Vermeulen,et al.  Astronomical constraints on the cosmic evolution of the fine structure constant and possible quantum dimensions. , 2000, Physical review letters.

[25]  J. Prochaska,et al.  Ionized Gas in Damped Lyα Protogalaxies. I. Model-independent Inferences from Kinematic Data , 2000, astro-ph/0009081.

[26]  David J. Wineland,et al.  High-resolution optical spectra of laser cooled ions , 1980 .

[27]  K. Lanzetta,et al.  The Kinematics of Intermediate-Redshift Gaseous Galaxy Halos , 1992 .

[28]  J. Schaye On the Relation between High-Redshift Starburst Galaxies and Damped Lyα Systems , 2001, astro-ph/0108101.

[29]  P. Mcdonald,et al.  Galaxy Formation and the Kinematics of Damped Lyα Systems , 1998, astro-ph/9809237.

[30]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[31]  A. G.,et al.  Atomic Energy Levels as derived from the Analyses of Optical Spectra , 1948, Nature.

[32]  J. Prochaska,et al.  The UCSD HIRES/Keck I Damped Lyα Abundance Database. I. The Data , 2001, astro-ph/0110350.

[33]  David L. Crawford,et al.  Instrumentation in Astronomy VI , 1986 .

[34]  J. Prochaska The Chemical Uniformity of High-z Damped Lyα Protogalaxies , 2002, astro-ph/0209193.

[35]  R. P. Butler,et al.  DETERMINING SPECTROMETER INSTRUMENTAL PROFILES USING FTS REFERENCE SPECTRA , 1995 .

[36]  M. Murphy,et al.  Improved constraints on possible variation of physical constants from H i 21‐cm and molecular QSO absorption lines , 2001, astro-ph/0101519.

[37]  P. Gay,et al.  The Isotopic Abundances of Magnesium in Stars , 1999, astro-ph/9911217.

[38]  J. Prochaska,et al.  Possible evidence for a variable fine structure constant from QSO absorption lines: Motivations, analysis and results , 2000, astro-ph/0012419.

[39]  R. P. Butler,et al.  PRECISION RADIAL VELOCITIES WITH AN IODINE ABSORPTION CELL , 1992 .

[40]  High-Metallicity Mg II Absorbers in the z < 1 Lyα Forest of PKS 0454+039: Giant Low Surface Brightness Galaxies?* ** , 1998, astro-ph/9801124.

[41]  J. Prochaska,et al.  Chemical Abundances of the Damped Lyα Systems at z > 1.5 , 1998, astro-ph/9810381.

[42]  T. Hänsch,et al.  The hydrogen atom : precision physics of simple atomic systems , 2001 .

[43]  Galacti chemical evolution: Hygrogen through zinc , 1994, astro-ph/9411003.

[44]  P. Peebles,et al.  COSMOLOGY AND THE RADIOACTIVE DECAY AGES OF TERRESTRIAL ROCKS AND METEORITES , 1962 .

[45]  R. Tjoelker,et al.  Atomic clocks and variations of the fine structure constant. , 1995, Physical review letters.

[46]  J. Prochaska,et al.  Further constraints on variation of the fine‐structure constant from alkali‐doublet QSO absorption lines , 2000, astro-ph/0012421.

[47]  P. Outram,et al.  The Lyman-alpha forest and heavy-element systems of GB1759+7539 , 1999, astro-ph/9907042.

[48]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey Quasar Catalog. I. Early Data Release , 2001, astro-ph/0110629.

[49]  J. Barrow,et al.  Spatial variations of fundamental constants , 1999, astro-ph/9904116.

[50]  Wolfe,et al.  Metallicity Evolution in the Early Universe. , 2000, The Astrophysical journal.

[51]  V. A. Dzuba,et al.  Space-Time Variation of Physical Constants and Relativistic Corrections in Atoms , 1999 .

[52]  A. Mann,et al.  Cold Atom Clocks , 2001 .

[53]  P. Langacker,et al.  Implications of gauge unification for time variation of the fine structure constant , 2001, hep-ph/0112233.

[54]  S. Johansson,et al.  The FERRUM Project: Experimental oscillator strengths of the UV 8 multiplet and other UV transitions from the y6P levels of Fe II , 2002 .

[55]  H. C. Stempels,et al.  VALD{2: Progress of the Vienna Atomic Line Data Base ? , 1999 .

[56]  A. Shlyakhter Direct test of the constancy of fundamental nuclear constants , 1976, Nature.

[57]  Eric R. Craine,et al.  Global network of astronomical telescopes: GNAT , 1994, Astronomical Telescopes and Instrumentation.

[58]  John K. Webb,et al.  SEARCH FOR TIME VARIATION OF THE FINE STRUCTURE CONSTANT , 1999 .

[59]  David M. Meyer,et al.  Evidence of Interstellar Na I Structure at Scales Down to 15 AU in Low-Density Gas , 2000 .

[60]  D. Turnshek,et al.  Discovery of DampedLyα Systems at Redshifts Less than 1.65 and Results on Their Incidence and Cosmological Mass Density , 1999, astro-ph/9909164.

[61]  S. Johansson,et al.  Accurate laboratory wavelengths of some ultraviolet lines of Cr, Zn and Ni relevant to time variations of the fine structure constant , 2002 .

[62]  Constraints on the variation of the fine structure constant from big bang nucleosynthesis , 1999, astro-ph/9902157.

[63]  C. Steidel,et al.  Low- and High-Ionization Absorption Properties of Mg II Absorption-selected Galaxies at Intermediate Redshifts. II. Taxonomy, Kinematics, and Galaxies , 2000, astro-ph/0005586.

[64]  V V Flambaum,et al.  Further evidence for cosmological evolution of the fine structure constant. , 2001, Physical review letters.

[65]  Ph Laurent,et al.  Search for variations of fundamental constants using atomic fountain clocks. , 2003, Physical review letters.

[66]  B. Taylor,et al.  CODATA recommended values of the fundamental physical constants: 2006 | NIST , 2007, 0801.0028.

[67]  M. Barlow,et al.  Detection of a variable interstellar absorption component towards δ Orionis A , 2000 .

[68]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .

[69]  V. Dzuba,et al.  α dependence of transition frequencies for ions Si II , Cr II , Fe II , Ni II , and Zn II , 2002 .

[70]  H. Bethe,et al.  Quantum Mechanics of One- and Two-Electron Atoms , 1957 .

[71]  Caltech,et al.  Low- and High-Ionization Absorption Properties of Mg II Absorption-selected Galaxies at Intermediate Redshifts. I. General Properties , 2000, astro-ph/0005585.

[72]  B. Krauskopf,et al.  Proc of SPIE , 2003 .

[73]  M. Savedoff Physical Constants in Extra-Galactic Nebulæ , 1956, Nature.

[74]  W. Sargent,et al.  The Lyα Forest at z ~ 4: Keck HIRES Observations of Q0000–26 , 1996 .

[75]  M. S. Roberts,et al.  Limits on the variation of fundamental atomic quantities over cosmic time scales. [Products of. cap , 1976 .

[76]  Jean-Philippe Uzan,et al.  The fundamental constants and their variation: observational and theoretical status , 2003 .

[77]  Michael Rauch,et al.  Damped Lyα Absorber at High Redshift: Large Disks or Galactic Building Blocks? , 1998 .

[78]  Byron A. Palmer,et al.  Atlas of the thorium spectrum , 1983 .

[79]  Göran Norlén,et al.  Wavelengths and Energy Levels of Ar I and Ar II based on New Interferometric Measurements in the Region 3 400-9 800 Å , 1973 .

[80]  Masayuki Nakagawa,et al.  The nuclear interaction at Oklo 2 billion years ago , 2000 .

[81]  J. W. Brault,et al.  Argon ion linelist and level energies in the hollow-cathode discharge , 1995 .

[82]  Walker,et al.  Time variation of fundamental constants, primordial nucleosynthesis, and the size of extra dimensions. , 1986, Physical review. D, Particles and fields.

[83]  J. Liske A hypothetical cosmological test: Trigonometry on large scales , 2003 .

[84]  V. Dzuba,et al.  Calculations of the relativistic effects in many-electron atoms and space-time variation of fundamental constants , 1998, physics/9808021.

[85]  I. Crawford,et al.  κ Velorum: another variable interstellar sightline? , 2000 .

[86]  The dipole observed in the {ital COBE} DMR 4 year data , 1996, astro-ph/9601151.

[87]  M. Stowell,et al.  Handbook of Chemistry and Physics 50th Edn , 1970 .

[88]  Time-varying coupling strengths, nuclear forces and unification , 2001, hep-ph/0112279.

[89]  T. A. Carlson,et al.  X-ray and inner-shell processes , 1990 .

[90]  F. Briggs,et al.  Magnesium, iron and calcium in the z=0.39498 21 centimeter absorber of PKS 1229-021. , 1985 .

[91]  Possible constraints on the time variation of the fine structure constant from cosmic microwave background data , 1998, astro-ph/9810102.

[92]  M. Wardle,et al.  Extreme Scattering Events and Galactic Dark Matter , 1998, astro-ph/9802111.