Entropy dissipation estimates for the Landau equation in the Coulomb case and applications

We present in this paper an estimate which bounds from below the entropy dissipation D(f) of the Landau operator with Coulomb interaction by a weighted H^1 norm of the square root of f. As a consequence, we get a weighted L^1_t(L^3_v) estimate for the solutions of the spatially homogeneous Landau equation with Coulomb interaction, and the propagation of L^1 moments of any order for this equation. We also present an application of our estimate to the Landau equation with (moderately) soft potentials, providing thus a new proof of some recent results of Kung-Chien Wu

[1]  N. N. Bogolyubov,et al.  Problems of a Dynamical Theory in Statistical Physics , 1959 .

[2]  Radjesvarane Alexandre Sur le taux de dissipation d'entropie sans troncature angulaire , 1998 .

[3]  L. Desvillettes Entropy dissipation rate and convergence in kinetic equations , 1989 .

[4]  C. Villani Regularity estimates via the entropy dissipation for the spatially homogeneous Boltzmann equation wi , 1999 .

[5]  Radjesvarane Alexandre,et al.  Entropy Dissipation and Long-Range Interactions , 2000 .

[6]  H. Guerin Solving Landau equation for some soft potentials through a probabilistic approach , 2003 .

[7]  Philip T. Gressman,et al.  Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production , 2010, 1007.1276.

[8]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[9]  Chao-Jiang Xu,et al.  Propagation of Gevrey regularity for solutions of Landau equations , 2008, 0911.4281.

[10]  P. Degond,et al.  Dispersion Relations for the Linearized Fokker-Planck Equation , 1997 .

[11]  Radjesvarane Alexandre,et al.  Some A priori estimates for the homogeneous Landau equation with soft potentials , 2013, 1302.1814.

[12]  Chao-Jiang Xu,et al.  ANALYTIC SMOOTHNESS EFFECT OF SOLUTIONS FOR SPATIALLY HOMOGENEOUS LANDAU EQUATION , 2009, 0910.1291.

[13]  N. V. Peskov,et al.  On the existence of a generalized solution of Landau's equation☆ , 1977 .

[14]  Cédric Villani,et al.  On a New Class of Weak Solutions to the Spatially Homogeneous Boltzmann and Landau Equations , 1998 .

[15]  Laurent Desvillettes,et al.  On asymptotics of the Boltzmann equation when the collisions become grazing , 1992 .

[16]  Chao-Jiang Xu,et al.  A remark on the ultra-analytic smoothing properties of the spatially homogeneous Landau equation , 2013, 1301.5566.

[17]  Nicolas Fournier,et al.  Well-posedness of the spatially homogeneous Landau equation for soft potentials , 2008, 0806.3379.

[18]  Philip T. Gressman,et al.  Global classical solutions of the Boltzmann equation with long-range interactions , 2010, Proceedings of the National Academy of Sciences.

[19]  N. Fournier Uniqueness of Bounded Solutions for the Homogeneous Landau Equation with a Coulomb Potential , 2009, 0909.0647.

[20]  Yan Guo,et al.  The Landau Equation in a Periodic Box , 2002 .

[21]  Kung-Chien Wu,et al.  Global in time estimates for the spatially homogeneous Landau equation with soft potentials , 2013, 1306.1220.

[22]  Eric A. Carlen,et al.  Entropy production estimates for Boltzmann equations with physically realistic collision kernels , 1994 .

[23]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part ii : h-theorem and applications , 2000 .

[24]  M. Pulvirenti,et al.  From Particle Systems to the Landau Equation: A Consistency Result , 2012, 1207.5987.

[25]  Cédric Villani,et al.  On the spatially homogeneous landau equation for hard potentials part i : existence, uniqueness and smoothness , 2000 .

[26]  Giuseppe Toscani,et al.  On the Trend to Equilibrium for Some Dissipative Systems with Slowly Increasing a Priori Bounds , 2000 .

[27]  Radjesvarane Alexandre,et al.  On the Landau approximation in plasma physics , 2004 .

[28]  C. Villani Chapter 2 – A Review of Mathematical Topics in Collisional Kinetic Theory , 2002 .

[29]  Philip T. Gressman,et al.  Global classical solutions of the Boltzmann equation without angular cut-off , 2009, 0912.0888.

[30]  Eric A. Carlen,et al.  Strict entropy production bounds and stability of the rate of convergence to equilibrium for the Boltzmann equation , 1992 .

[31]  P. Lions Régularité et compacité pour des noyaux de collision de Boltzmann sans troncature angulaire , 1998 .

[32]  Cédric Villani,et al.  ON THE SPATIALLY HOMOGENEOUS LANDAU EQUATION FOR MAXWELLIAN MOLECULES , 1998 .