Virtual screening, selection and development of a benzindolone structural scaffold for inhibition of lumazine synthase.

[1]  Gajendra P. S. Raghava,et al.  Virtual Screening of potential drug-like inhibitors against Lysine/DAP pathway of Mycobacterium tuberculosis , 2010, BMC Bioinformatics.

[2]  Makoto Taiji,et al.  High-Performance Drug Discovery: Computational Screening by Combining Docking and Molecular Dynamics Simulations , 2009, PLoS Comput. Biol..

[3]  A. Bacher,et al.  Discovery and development of a small molecule library with lumazine synthase inhibitory activity. , 2009, The Journal of organic chemistry.

[4]  A. Bacher,et al.  (15)N{(31)P} REDOR NMR studies of the binding of phosphonate reaction intermediate analogues to Saccharomyces cerevisiae lumazine synthase. , 2008, Biochemistry.

[5]  A. Bacher,et al.  A new series of N-[2,4-dioxo-6-d-ribitylamino-1,2,3,4-tetrahydropyrimidin-5-yl]oxalamic acid derivatives as inhibitors of lumazine synthase and riboflavin synthase: design, synthesis, biochemical evaluation, crystallography, and mechanistic implications. , 2008, The Journal of organic chemistry.

[6]  Markus Fischer,et al.  Lumazine Synthase from Candida albicans as an Anti-fungal Target Enzyme , 2007, Journal of Biological Chemistry.

[7]  Markus Fischer,et al.  Structural and thermodynamic insights into the binding mode of five novel inhibitors of lumazine synthase from Mycobacterium tuberculosis , 2006, The FEBS journal.

[8]  Matthew P. Repasky,et al.  Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein-ligand complexes. , 2006, Journal of medicinal chemistry.

[9]  B. Braden,et al.  Crystallographic studies on decameric Brucella spp. Lumazine synthase: a novel quaternary arrangement evolved for a new function? , 2005, Journal of molecular biology.

[10]  Gerhard Klebe,et al.  Virtual Screening: Scope and Limitations , 2005 .

[11]  Markus Fischer,et al.  Crystal structure of lumazine synthase from Mycobacterium tuberculosis as a target for rational drug design: binding mode of a new class of purinetrione inhibitors. , 2005, Biochemistry.

[12]  Brian K. Shoichet,et al.  ZINC - A Free Database of Commercially Available Compounds for Virtual Screening , 2005, J. Chem. Inf. Model..

[13]  T. Macdonald,et al.  Initial structure-activity relationships of lysophosphatidic acid receptor antagonists: discovery of a high-affinity LPA1/LPA3 receptor antagonist. , 2004, Bioorganic & medicinal chemistry letters.

[14]  Robert A Blake,et al.  Design and synthesis of aminopropyl tetrahydroindole-based indolin-2-ones as selective and potent inhibitors of Src and Yes tyrosine kinase. , 2004, Bioorganic & medicinal chemistry letters.

[15]  A. Bacher,et al.  Design, synthesis, and evaluation of 9-D-ribitylamino-1,3,7,9-tetrahydro-2,6,8-purinetriones bearing alkyl phosphate and alpha,alpha-difluorophosphonate substituents as inhibitors of tiboflavin synthase and lumazine synthase. , 2004, The Journal of organic chemistry.

[16]  A. Bacher,et al.  Presteady State Kinetic Analysis of Riboflavin Synthase* , 2003, Journal of Biological Chemistry.

[17]  S. Steinbacher,et al.  Structure of 3,4-Dihydroxy-2-butanone 4-Phosphate Synthase from Methanococcus jannaschii in Complex with Divalent Metal Ions and the Substrate Ribulose 5-Phosphate , 2003, Journal of Biological Chemistry.

[18]  A. Bacher,et al.  Temperature-dependent Presteady State Kinetics of Lumazine Synthase from the Hyperthermophilic Eubacterium Aquifex aeolicus* , 2003, Journal of Biological Chemistry.

[19]  Markus Fischer,et al.  A structure-based model of the reaction catalyzed by lumazine synthase from Aquifex aeolicus. , 2003, Journal of molecular biology.

[20]  A. Bacher,et al.  Biosynthesis of riboflavin. Single turnover kinetic analysis of 6,7-dimethyl-8-ribityllumazine synthase. , 2003, Journal of the American Chemical Society.

[21]  A. Bacher,et al.  Biosynthesis of riboflavin in Archaea , 2003 .

[22]  R. Huber,et al.  Enzyme catalysis via control of activation entropy: site-directed mutagenesis of 6,7-dimethyl-8-ribityllumazine synthase. , 2003, Journal of molecular biology.

[23]  A. Bacher,et al.  Biosynthesis of vitamin B2. , 2002, European journal of biochemistry.

[24]  S. Steinbacher,et al.  Biosynthesis of Riboflavin in Archaea Studies on the Mechanism of 3,4-Dihydroxy-2-butanone-4-phosphate Synthase of Methanococcus jannaschii * , 2002, The Journal of Biological Chemistry.

[25]  Paul D Lyne,et al.  Structure-based virtual screening: an overview. , 2002, Drug discovery today.

[26]  R. Huber,et al.  Incorporation of an amide into 5-phosphonoalkyl-6-D-ribitylaminopyrimidinedione lumazine synthase inhibitors results in an unexpected reversal of selectivity for riboflavin synthase vs lumazine synthase. , 2002, The Journal of organic chemistry.

[27]  S. Steinbacher,et al.  Studies on the reaction mechanism of riboflavin synthase: X-ray crystal structure of a complex with 6-carboxyethyl-7-oxo-8-ribityllumazine. , 2002, Structure.

[28]  S. Steinbacher,et al.  The structural basis of riboflavin binding to Schizosaccharomyces pombe 6,7-dimethyl-8-ribityllumazine synthase. , 2002, Journal of molecular biology.

[29]  R. Huber,et al.  Biosynthesis of riboflavin: 6,7-dimethyl-8-ribityllumazine synthase of Schizosaccharomyces pombe. , 2002, European journal of biochemistry.

[30]  W. Eisenreich,et al.  Biosynthesis of Riboflavin , 2001, Journal of Biological Chemistry.

[31]  W. Eisenreich,et al.  A pentacyclic reaction intermediate of riboflavin synthase , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[32]  A. Bacher,et al.  19F NMR ligand perturbation studies on 6,7-bis(trifluoromethyl)-8-ribityllumazine-7-hydrates and the lumazine synthase complex of Bacillus subtilis. Site-directed mutagenesis changes the mechanism and the stereoselectivity of the catalyzed haloform-type reaction. , 2001, The Journal of organic chemistry.

[33]  A. Bacher,et al.  Riboflavin Synthase of Escherichia coli , 2001, The Journal of Biological Chemistry.

[34]  A. Bacher,et al.  X-ray structure analysis and crystallographic refinement of lumazine synthase from the hyperthermophile Aquifex aeolicus at 1.6 A resolution: determinants of thermostability revealed from structural comparisons. , 2001, Journal of molecular biology.

[35]  Alexander D. MacKerell,et al.  Identification of HIV-1 integrase inhibitors via three-dimensional database searching using ASV and HIV-1 integrases as targets. , 2000, Bioorganic & medicinal chemistry.

[36]  A. Bacher,et al.  The atomic structure of pentameric lumazine synthase from Saccharomyces cerevisiae at 1.85 A resolution reveals the binding mode of a phosphonate intermediate analogue. , 2000, Journal of molecular biology.

[37]  I D Kuntz,et al.  Inhibitors of kinesin activity from structure-based computer screening. , 2000, Biochemistry.

[38]  G. Keglevich,et al.  d-Glucose-based azacrown ethers with a phosphonoalkyl side chain: application as enantioselective phase transfer catalysts , 1999 .

[39]  A. Bacher,et al.  Design, Synthesis, and Biological Evaluation of Homologous Phosphonic Acids and Sulfonic Acids as Inhibitors of Lumazine Synthase , 1999 .

[40]  H. Lönnberg,et al.  Kinetics and mechanism of tetrazole-catalyzed phosphoramidite alcoholysis , 1998 .

[41]  A. Bacher,et al.  Biosynthesis of riboflavin: characterization of the bifunctional deaminase-reductase of Escherichia coli and Bacillus subtilis , 1997, Journal of bacteriology.

[42]  A. Bacher,et al.  Biosynthesis of riboflavin: 3,4-dihydroxy-2-butanone-4-phosphate synthase. , 1997, Methods in enzymology.

[43]  A. Bacher,et al.  Biosynthesis of riboflavin: GTP cyclohydrolase II, deaminase, and reductase. , 1997, Methods in enzymology.

[44]  A. Bacher,et al.  Biosynthesis of riboflavin: lumazine synthase and riboflavin synthase. , 1997, Methods in enzymology.

[45]  A. Bacher,et al.  Biosynthesis of Riboflavin , 1996, The Journal of Biological Chemistry.

[46]  T. Werner,et al.  Cloning, sequencing, mapping and hyperexpression of the ribC gene coding for riboflavin synthase of Escherichia coli. , 1996, European journal of biochemistry.

[47]  S. Withers,et al.  Phosphonate and α-Fluorophosphonate Analogue Probes of the Ionization State of Pyridoxal 5‘-Phosphate (PLP) in Glycogen Phosphorylase† , 1996 .

[48]  P. Kuzmič,et al.  Program DYNAFIT for the analysis of enzyme kinetic data: application to HIV proteinase. , 1996, Analytical biochemistry.

[49]  R. Huber,et al.  Studies on the lumazine synthase/riboflavin synthase complex of Bacillus subtilis: crystal structure analysis of reconstituted, icosahedral beta-subunit capsids with bound substrate analogue inhibitor at 2.4 A resolution. , 1995, Journal of molecular biology.

[50]  A. Bacher,et al.  Biosynthesis of riboflavin. Studies on the reaction mechanism of 6,7-dimethyl-8-ribityllumazine synthase. , 1995, Biochemistry.

[51]  Yong-Joon Kim,et al.  Synthesis of ω-Phthalimidoalkylphosphonates , 1994 .

[52]  A. Bacher,et al.  Biosynthesis of riboflavin: cloning, sequencing, mapping, and expression of the gene coding for GTP cyclohydrolase II in Escherichia coli , 1993, Journal of bacteriology.

[53]  A. Bacher,et al.  Biosynthesis of riboflavin: cloning, sequencing, and expression of the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli , 1992, Journal of bacteriology.

[54]  F. Mȕller Chemistry and Biochemistry of Flavoenzymes: Volume I , 1991 .

[55]  J. C. Martin,et al.  Acyclic purine phosphonate analogues as antiviral agents. Synthesis and structure-activity relationships. , 1990, Journal of medicinal chemistry.

[56]  R. Huber,et al.  Heavy riboflavin synthase from Bacillus subtilis. Crystal structure analysis of the icosahedral beta 60 capsid at 3.3 A resolution. , 1988, Journal of molecular biology.

[57]  A. Bacher,et al.  Biosynthesis of riboflavin. The structure of the four-carbon precursor , 1988 .

[58]  P. Miginiac,et al.  Activation of zinc by trimethylchlorosilane. An improved procedure for the preparation of .beta.-hydroxy esters from ethyl bromoacetate and aldehydes or ketones (Reformatsky reaction) , 1987 .

[59]  A. Bacher,et al.  Biosynthesis of riboflavin. An aliphatic intermediate in the formation of 6,7-dimethyl-8-ribityllumazine from pentose phosphate. , 1985, Biochemical and biophysical research communications.

[60]  L. G. Sprague,et al.  A safe practical synthesis of difluorophosphonoacetic acid , 1984 .

[61]  W. E. Billups,et al.  Synthesis of tris-annelated benzenes incorporating a three-membered ring , 1984 .

[62]  D. Burton,et al.  Preparation, stability, reactivity and synthetic utility of a cadmium stabilized complex of difluoromethylene phosphonic acid ester , 1981 .

[63]  R. M. Flynn,et al.  Preparation of -methylene bis phosphonates , 1980 .

[64]  R. M. Flynn,et al.  Michaelis-arbuzov preparation of halo-F-methylphosphonates , 1977 .