Compactified Jacobians and q,t-Catalan numbers, II

We continue the study of the rational-slope generalized q,t-Catalan numbers cm,n(q,t). We describe generalizations of the bijective constructions of J. Haglund and N. Loehr and use them to prove a weak symmetry property cm,n(q,1)=cm,n(1,q) for m=kn±1. We give a bijective proof of the full symmetry cm,n(q,t)=cm,n(t,q) for min(m,n)≤3. As a corollary of these combinatorial constructions, we give a simple formula for the Poincaré polynomials of compactified Jacobians of plane curve singularities xkn±1=yn. We also give a geometric interpretation of a relation between rational-slope Catalan numbers and the theory of (m,n)-cores discovered by J. Anderson.

[1]  Arnaud Beauville,et al.  Counting rational curves on ${\text{K3}}$ surfaces , 1999 .

[2]  A. Oblomkov,et al.  The Hilbert scheme of a plane curve singularity and the HOMFLY polynomial of its link , 2010, 1003.1568.

[3]  Evgeny Gorsky,et al.  Compactified Jacobians and q,t-Catalan numbers, II , 2012, Journal of Algebraic Combinatorics.

[4]  Nicholas A. Loehr,et al.  Conjectured Statistics for the Higher q, t-Catalan Sequences , 2005, Electron. J. Comb..

[5]  Tatsuyuki Hikita,et al.  Affine Springer fibers of type A and combinatorics of diagonal coinvariants , 2012, 1203.5878.

[6]  G. Greuel,et al.  Moduli spaces for torsion free modules on curve singularities I , 1993 .

[7]  Ernst Kunz,et al.  The value-semigroup of a one-dimensional Gorenstein ring , 1970 .

[8]  Gregory S. Warrington,et al.  A continuous family of partition statistics equidistributed with length , 2009, J. Comb. Theory A.

[9]  H. Kleppe,et al.  Reducibility of the compactified jacobian , 1981 .

[10]  Alexei Oblomkov,et al.  Torus knots and the rational DAHA , 2012, 1207.4523.

[11]  Li Li,et al.  Combinatorics of certain higher q,t-Catalan polynomials: chains, joint symmetry, and the Garsia–Haiman formula , 2012, 1211.2191.

[12]  Jens Piontkowski,et al.  Topology of the compactified Jacobians of singular curves , 2006 .

[13]  Lawrence Sze,et al.  Self-conjugate simultaneous p- and q-core partitions and blocks of An , 2009 .

[14]  George Lusztig,et al.  Fixed Point Varieties on the Space of Lattices , 1991 .

[15]  James Haglund,et al.  The q, t-Catalan numbers and the space of diagonal harmonics : with an appendix on the combinatorics of Macdonald polynomials , 2007 .

[16]  A. Garsia,et al.  A Remarkable q, t-Catalan Sequence and q-Lagrange Inversion , 1996 .

[17]  Félix Delgado de la Mata Gorenstein curves and symmetry of the semigroup of values , 1988 .

[18]  Adriano M. Garsia,et al.  A proof of the q, t-Catalan positivity conjecture , 2002, Discret. Math..

[19]  J. Rasmussen,et al.  The Hilbert scheme of a plane curve singularity and the HOMFLY homology of its link , 2012, 1201.2115.

[20]  James Haglund Conjectured statistics for the q,t-Catalan numbers , 2003 .

[21]  Jaclyn Anderson,et al.  Partitions which are simultaneously t1- and t2-core , 2002, Discret. Math..