Selective Ion Transport and Complexation in Layer‐by‐Layer Assemblies of p‐Sulfonato‐ calix[n]arenes and Cationic Polyelectrolytes

The first study of ion transport across self‐assembled multilayered films of p‐sulfonato‐calix[n]arenes and poly(vinyl amine) (PVA) is presented. The films are prepared by the alternate electrostatic layer‐by‐layer assembly of the anionic calixarenes and cationic PVA on porous polyacrylonitrile (PAN) supports. We use tetra‐p‐sulfonato‐calix[4]arene (calix4), hexa‐p‐sulfonato‐calix[6]arene (calix6), and octa‐p‐sulfonato‐calix[8]arene (calix8) as the calixarenes. Ultraviolet (UV) studies indicate that dipping solutions of pH 6.8, without a supporting electrolyte, are most suited for film preparation. Calix8 is adsorbed in higher concentrations per layer than calix6 or calix4, probably because desorption is less pronounced. The permeation rates, PRs, of monovalent alkali‐metal chlorides (Li, Na, K, Cs), magnesium chloride, divalent transition‐metal chlorides (Ni, Cu, Zn), trivalent lanthanide chlorides (La, Ce, Pr, Sm), and sodium sulfate across the calix4/PVA, calix6/PVA, and calix8/PVA membranes are studied and compared with the corresponding PR values across a poly(styrene sulfonate) (PSS)/PVA multilayer membrane prepared under the same conditions. The PR values of the alkali‐metal salts are between 4 and 17 × 10–6 cm s–1, those of magnesium chloride and the transition‐metal salts are 0.2–1.3 × 10–6 cm s–1, and those of the lanthanide salts are about 0.1 × 10–6 cm s–1. Possible origins for the large differences are discussed. Ion transport is first of all controlled by electrostatic effects such as Donnan rejection of di‐ and trivalent ions in the membrane, but metal‐ion complexation with the calixarene derivatives also plays a role. Complexation occurs especially between Li+ or Na+ and calix4, Mg2+, or Cu2+ and calix6, Cu2+, Zn2+, or the lanthanide ions and calix8. Divalent sulfate ions are found to replace the calixarene polyanions in the membrane. UV studies of the permeate solutions indicate that calix4 especially is displaced during sulfate permeation.

[1]  J. Atwood,et al.  Hydrogen-bonded arrays of a ytterbium(III) p-sulfonatocalix[6]arene complex , 2004 .

[2]  W. Jin,et al.  Self-Assembled Films of Prussian Blue and Analogues: Structure and Morphology, Elemental Composition, Film Growth, and Nanosieving of Ions , 2003 .

[3]  W. Cao,et al.  COVALENTLY ATTACHED MULTILAYER ULTRA-THIN FILMS FROM DIAZORESIN AND CALIXARENES * , 2003 .

[4]  Haibing Li,et al.  Synthesis, characterization, and metal ions adsorption properties of chitosan-calixarenes (I) , 2003 .

[5]  Merlin L. Bruening,et al.  Ultrathin, Multilayered Polyelectrolyte Films as Nanofiltration Membranes , 2003 .

[6]  D. Roundhill,et al.  Polymer Supported Calix[4]Arene Derivatives for the Extraction of Metals and Dichromate Anions , 2003 .

[7]  J. Schlenoff,et al.  Doping-controlled ion diffusion in polyelectrolyte multilayers: mass transport in reluctant exchangers. , 2003, Journal of the American Chemical Society.

[8]  Wanqin Jin,et al.  Use of Polyelectrolyte Layer-by-Layer Assemblies as Nanofiltration and Reverse Osmosis Membranes , 2003 .

[9]  W. Jin,et al.  Self-assembled Films of Prussian Blue and Analogues: Optical and Electrochemical Properties and Application as Ion-Sieving Membranes , 2003 .

[10]  M. Bruening,et al.  Ultrathin, Gas-Selective Polyimide Membranes Prepared from Multilayer Polyelectrolyte Films , 2003 .

[11]  Gero Decher,et al.  Multilayer Thin Films , 2002 .

[12]  B. Tieke,et al.  Pervaporation separation of alcohol/water mixtures using self-assembled polyelectrolyte multilayer membranes of high charge density , 2002 .

[13]  B. Tieke,et al.  Selective transport and incorporation of highly charged metal and metal complex ions in self-assembled polyelectrolyte multilayer membranes , 2002 .

[14]  J. Atwood,et al.  Supramolecular assemblies of p-sulfonatocalix[4]arene with aquated trivalent lanthanide ions , 2002 .

[15]  L. Mutihac,et al.  Calixarene derivatives as carriers in liquid membrane transport , 2002 .

[16]  A. Riegler,et al.  Polyelectrolytes. 2. Intrinsic or extrinsic charge compensation? Quantitative charge analysis of PAH/PSS multilayers , 2002 .

[17]  Jieyu Hu,et al.  Discovery of exceptionally efficient catalysts for solvent-free enantioselective hetero-Diels-Alder reaction. , 2002, Journal of the American Chemical Society.

[18]  H. Nalwa,et al.  Handbook of polyelectrolytes and their applications , 2002 .

[19]  C. Raston,et al.  Capture of di-protonated [2.2.2]cryptand in the cavity of two p-sulfonated calixarenes as part of 2-D bi-layer lanthanide coordination polymers. , 2002, Chemical communications.

[20]  M. Chudy,et al.  Highly selective optical-sensing membranes, containing calix[4]arene chromoionophores, for Pb2+ ions. , 2001, Chemistry.

[21]  J. Atwood,et al.  Metal sulfonatocalix[4,5]arene complexes: bi-layers, capsules, spheres, tubular arrays and beyond , 2001 .

[22]  G. Esposito,et al.  p-Sulfonatocalix[6]arene is an effective coacervator of poly(allylamine hydrochloride). , 2001, Chemical communications.

[23]  A. Coleman,et al.  Anion and Cation Interactions with p-Dodecanoylcalix[4]arene Monolayers at the Air−Water Interface , 2001 .

[24]  B. Tieke,et al.  Self‐Assembled Ultrathin Films of Conducting Poly(metal tetrathiooxalates) , 2001 .

[25]  T. Ness,et al.  Bi-Layer Complexes Incorporating Large Organic Cations and Anionic Tetra-p-Sulfonated Calix[4]arene Capsules , 2001 .

[26]  B. Tieke,et al.  Ultrathin self-assembled polyelectrolyte multilayer membranes , 2001 .

[27]  J. Meier‐Haack,et al.  Pervaporation separation of water/alcohol mixtures using composite membranes based on polyelectrolyte multilayer assemblies , 2001 .

[28]  J. Schlenoff,et al.  Ion Transport and Equilibria in Polyelectrolyte Multilayers , 2001 .

[29]  C. Detellier,et al.  Structure of a Discrete 8:6 La(Iii): P-Sulfonatocalix[4]Arene Complex , 2001 .

[30]  B. Tieke,et al.  Ultrathin Self-Assembled Polyvinylamine/Polyvinylsulfate Membranes for Separation of Ions , 2001 .

[31]  Jeremy J. Harris,et al.  Layered Polyelectrolyte Films as Selective, Ultrathin Barriers for Anion Transport , 2000 .

[32]  B. Tieke,et al.  Selective Ion Transport across Self-Assembled Alternating Multilayers of Cationic and Anionic Polyelectrolytes , 2000 .

[33]  B. Tieke,et al.  Ultrathin self-assembled polyelectrolyte membranes for pervaporation , 1998 .

[34]  J. Schlenoff,et al.  Charge and Mass Balance in Polyelectrolyte Multilayers , 1998 .

[35]  Basil I. Swanson,et al.  Polyelectrolyte and molecular host ion self-assembly to multilayer thin films : An approach to thin film chemical sensors , 1997 .

[36]  V. Böhmer,et al.  Calixarenes, Macrocycles with (Almost) Unlimited Possibilities , 1995 .

[37]  G. Wenz Cyclodextrins as Building Blocks for Supramolecular Structures and Functional Units , 1994 .

[38]  M. Conner,et al.  Perforated monolayers : fabrication of calix[6]arene-based composite membranes that function as molecular sieves , 1993 .

[39]  S. Shinkai,et al.  Tailor-making of desired assemblies from well-designed monomers: use of calix[4]arene conformers as building blocks , 1993 .

[40]  J. Atwood,et al.  Double partial cone conformation for Na{sub 8}(calix[6]arene sulfonate){center_dot}20.5H{sub 2}O and its parent acid , 1992 .

[41]  Shoji Kimura,et al.  Bipolar reverse osmosis membrane for separating mono-and divalent ions , 1992 .

[42]  Johannes Schmitt,et al.  Fine-Tuning of the film thickness of ultrathin multilayer films composed of consecutively alternating layers of anionic and cationic polyelectrolytes , 1992 .

[43]  Y. Kang,et al.  Selective transport of amino acid esters through a chloroform liquid membrane by a calix[6]arene-based ester carrier , 1991 .

[44]  Y. Ishikawa,et al.  Formation of calixarene monolayers which selectively respond to metal ions , 1989 .

[45]  S. Shinkai,et al.  Hexasulfonated calix[6]arene derivatives: a new class of catalysts, surfactants, and host molecules. , 1986, Journal of the American Chemical Society.

[46]  C. Gutsche,et al.  Calixarenes. 13. The conformational properties of calix[4]arenes, calix[6]arenes, calix[8]arenes, and oxacalixarenes , 1985 .