An Algorithm to Prove Contraction, Consensus, and Network Synchronization

Abstract This paper introduces a new algorithm to prove contraction of nonlinear dynamical systems. The algorithm is then used to devise novel strategies to achieve synchronization and consensus of networked control systems. Numerical simulations illustrate the results on a set of representative examples.

[1]  P. Hartman On Stability in the Large for Systems of Ordinary Differential Equations , 1961, Canadian Journal of Mathematics.

[2]  Eduardo Sontag,et al.  Modular cell biology: retroactivity and insulation , 2008, Molecular systems biology.

[3]  Nathan van de Wouw,et al.  Convergent dynamics, a tribute to Boris Pavlovich Demidovich , 2004, Syst. Control. Lett..

[4]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[5]  D. C. Lewis Metric Properties of Differential Equations , 1949 .

[6]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[7]  Soon-Jo Chung,et al.  Nonlinear Model Reduction and Decentralized Control of Tethered Formation Flight , 2007 .

[8]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[9]  W. Lohmiller,et al.  Contraction analysis of non-linear distributed systems , 2005 .

[10]  Wassim M. Haddad,et al.  Distributed nonlinear control algorithms for network consensus , 2008, Autom..

[11]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[12]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[13]  Mario di Bernardo,et al.  Global Entrainment of Transcriptional Systems to Periodic Inputs , 2009, PLoS Comput. Biol..

[14]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[15]  Mario di Bernardo,et al.  How to Synchronize Biological Clocks , 2009, J. Comput. Biol..

[16]  M. Elowitz,et al.  A synthetic oscillatory network of transcriptional regulators , 2000, Nature.

[17]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[18]  Richard M. Murray,et al.  Consensus problems in networks of agents with switching topology and time-delays , 2004, IEEE Transactions on Automatic Control.

[19]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[20]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[21]  Francesco Bullo,et al.  Coordination and Geometric Optimization via Distributed Dynamical Systems , 2003, SIAM J. Control. Optim..

[22]  Nicolas Tabareau,et al.  A Contraction Theory Approach to Stochastic Incremental Stability , 2007, IEEE Transactions on Automatic Control.

[23]  M. Elowitz,et al.  Modeling a synthetic multicellular clock: repressilators coupled by quorum sensing. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[24]  Mario di Bernardo,et al.  An algorithm for the construction of synthetic self synchronizing biological circuits , 2009, 2009 IEEE International Symposium on Circuits and Systems.