Local convergence of quasi-Newton methods under metric regularity

We consider quasi-Newton methods for generalized equations in Banach spaces under metric regularity and give a sufficient condition for q-linear convergence. Then we show that the well-known Broyden update satisfies this sufficient condition in Hilbert spaces. We also establish various modes of q-superlinear convergence of the Broyden update under strong metric subregularity, metric regularity and strong metric regularity. In particular, we show that the Broyden update applied to a generalized equation in Hilbert spaces satisfies the Dennis–Moré condition for q-superlinear convergence. Simple numerical examples illustrate the results.

[1]  Adnan Yassine,et al.  Quasi-Newton methods in infinite-dimensional spaces and application to matrix equations , 2011, J. Glob. Optim..

[2]  J. F. Bonnans,et al.  Local analysis of Newton-type methods for variational inequalities and nonlinear programming , 1994 .

[3]  R. T. Rockafellar,et al.  PARAMETRIC STABILITY OF SOLUTIONS IN MODELS OF ECONOMIC EQUILIBRIUM , 2012 .

[4]  D. Klatte Nonsmooth equations in optimization , 2002 .

[5]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings , 2009 .

[6]  William W. Hager,et al.  An inverse mapping theorem for set-valued maps , 1994 .

[7]  Ya-Xiang Yuan,et al.  Optimization Theory and Methods: Nonlinear Programming , 2010 .

[8]  Marie Frei,et al.  Recent Developments In Well Posed Variational Problems , 2016 .

[9]  A. Dontchev Local convergence of the Newton method for generalized equations , 1996 .

[10]  Y. Cho,et al.  Numerical Methods for Equations and its Applications , 2012 .

[11]  C. T. Kelley,et al.  A New Proof of Superlinear Convergence for Broyden's Method in Hilbert Space , 1991, SIAM J. Optim..

[12]  C. Kelley Iterative Methods for Linear and Nonlinear Equations , 1987 .

[13]  K. I. M. McKinnon,et al.  Solving Stochastic Ship Fleet Routing Problems with Inventory Management Using Branch and Price , 2016, Advances in Stochastic and Deterministic Global Optimization.

[14]  D. M. Hwang,et al.  Convergence of Broyden's Method in Banach Spaces , 1991, SIAM J. Optim..

[15]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[16]  Ekkehard W. Sachs,et al.  Broyden's method in Hilbert space , 1986, Math. Program..

[17]  A. Griewank The local convergence of Broyden-like methods on Lipschitzian problems in Hilbert spaces , 1987 .

[18]  J. J. Moré,et al.  A Characterization of Superlinear Convergence and its Application to Quasi-Newton Methods , 1973 .

[19]  R. Rockafellar,et al.  Implicit Functions and Solution Mappings: A View from Variational Analysis , 2009 .

[20]  Asen L. Dontchev Lipschitzian Stability of Newton's Method for Variational Inclusions , 1999, System Modelling and Optimization.

[21]  Asen L. Dontchev,et al.  Generalizations of the Dennis-Moré Theorem , 2012, SIAM J. Optim..

[22]  Andreas Griewank,et al.  Broyden Updating, the Good and the Bad! , 2012 .

[23]  Asen L. Dontchev,et al.  Characterizations of Lipschitz Stability in Optimization , 1995 .

[24]  Stephen M. Robinson,et al.  Strongly Regular Generalized Equations , 1980, Math. Oper. Res..

[25]  DILEEP MENON,et al.  AN INTRODUCTION TO FUNCTIONAL ANALYSIS , 2010 .

[26]  S. Grzegórski Orthogonal Projections on Convex Sets for Newton-Like Methods , 1985 .

[27]  Ekkehard W. Sachs,et al.  Convergence Rates of Quasi-Newton Algorithms for Some Nonsmooth Optimization Problems , 1985 .