Free Flexural Vibration Analysis of Arbitrary Plates With Arbitrary Stiffeners

Isoparametric element tends to lock in shear for very thin plates. Though numerical techniques such as reduced-integration or selective reduced-integration are used to avoid this effect, they do not necessarily guarantee the solution to the problem, even if they increase notably the possibility of convergence with the exact solution. In the present formulation, a new four-noded stiffened-plate bending element, having the elegance of the isoparametric element to model the arbitrary shape of the plate but without any numerical disturbing feature like shear-locking problem, is presented. Another unique feature is the arbitrary placement of the stiffener inside the plate element without any restriction of its orientation. Stiffened plates having various shapes, boundary conditions, and disposition of stiffeners are analyzed and compared with available results in the literature wherever possible.

[1]  K. Liew,et al.  Formulation of Mindlin-Engesser model for stiffened plate vibration , 1995 .

[2]  Renato Vitaliani,et al.  A finite element formulation for shells of arbitrary geometry , 1990 .

[3]  Yang Xiang,et al.  Flexural vibration of shear deformable circular and annular plates on ring supports , 1993 .

[4]  K. Liew,et al.  Vibration of Triangular Plates: Point Supports, Mixed Edges and Partial Internal Curved Supports , 1994 .

[5]  K. Liew,et al.  Buckling And Vibration Of Annular Mindlin Plates With Internal Concentric Ring Supports Subject To In-Plane Radial Pressure , 1994 .

[6]  Tomisaku Mizusawa,et al.  Vibration of stiffened skew plates by using B-spline functions , 1979 .

[7]  Muwa mt FINITE ELEMENT FREE VIBRATION OF ECCENTRICALLY STIFFENED PLATES , 1988 .

[8]  R. B. Corr,et al.  A simultaneous iteration algorithm for symmetric eigenvalue problems , 1976 .

[9]  Abhijit Mukherjee,et al.  Finite element free vibration analysis of stiffened plates , 1986, The Aeronautical Journal (1968).

[10]  K. Liew Frequency solutions for circular plates with internal supports and discontinuous boundaries , 1992 .

[11]  M. K. Lim,et al.  Vibration of rectangular mindlin plates with intermediate stiffeners , 1994 .

[12]  P. S. Nair,et al.  On vibration of plates with varying stiffener length , 1984 .

[13]  K. Liew,et al.  Transverse Vibration of Solid Circular Plates Continuous Over Multiple Concentric Annular Supports , 1993 .

[15]  K. M. Liew,et al.  Vibration analysis of multi-span plates having orthogonal straight edges , 1991 .

[16]  M. Mukhopadhyay Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, part II: Consideration of bending and axial displacements , 1989 .

[17]  Yang Xiang,et al.  Vibration of annular sector mindlin plates with internal radial line and circumferential arc supports , 1995 .

[18]  M. Mukhopadhyay,et al.  Vibration and stability analysis of stiffened plates by semi-analytic finite difference method, Part I: Consideration of bending displacements only , 1989 .

[19]  K. M. Liew,et al.  Vibration of eccentric ring and line supported circular plates carrying concentrated masses , 1992 .

[20]  K. Liew,et al.  Flexural Vibration Of Skew Mindlin Plates With Oblique Internal Line Supports , 1994 .

[21]  Garry M. Lindberg,et al.  Finite element analysis of plates with curved edges , 1972 .

[22]  K. M. Liew,et al.  A numerical model based on orthogonal plate functions for vibration of ring supported elliptical plates , 1992 .

[23]  R. G. Anderson,et al.  VIBRATION AND STABILITY OF PLATES USING FINITE ELEMENTS , 1968 .

[24]  A Mukherjee,et al.  A REVIEW OF DYNAMIC BEHAVIOUR OF STIFFENED PLATES , 1986 .

[25]  Yang Xiang,et al.  VIBRATION OF CIRCULAR AND ANNULAR MINDLIN PLATES WITH INTERNAL RING STIFFENERS , 1996 .

[26]  M. Mukhopadhyay,et al.  A review of dynamic behavior of stiffened plates , 1986 .

[27]  Yang Xiang,et al.  Vibration of stiffened skew Mindlin plates , 1995 .

[28]  K. M. Liew,et al.  Vibration studies on skew plates: Treatment of internal line supports , 1993 .

[29]  Abdul Hamid Sheikh,et al.  Free Vibration Analysis Of Stiffened Plates With Arbitrary Planform By The General Spline Finite Strip Method , 1993 .

[30]  M. Mukhopadhyay,et al.  Literature Review : Recent Advances On the Dynamic Behavior of Stiffened Plates , 1989 .