An equal-order velocity-pressure formulation that does not exhibit spurious pressure modes

[1]  A. J. Baker,et al.  Finite element computational fluid mechanics , 1983 .

[2]  E. Becker,et al.  Finite element analysis of viscous, incompressible fluid flow , 1976 .

[3]  R. D. Jackson,et al.  Heat Transfer 1 , 1965 .

[4]  The significance of chequerboarding in a Galerkin finite element solution of the Navier‐Stokes equations , 1981 .

[5]  P TaylorC.Hood,et al.  Navier-Stokes equations using mixed interpolation , 1974 .

[6]  Suhas V. Patankar,et al.  A CONTROL VOLUME-BASED FINITE-ELEMENT METHOD FOR SOLVING THE NAVIER-STOKES EQUATIONS USING EQUAL-ORDER VELOCITY-PRESSURE INTERPOLATION , 1984 .

[7]  A. D. Gosman,et al.  Heat and Mass Transfer in Recirculating Flows , 1969 .

[8]  B. Armaly,et al.  Experimental and theoretical investigation of backward-facing step flow , 1983, Journal of Fluid Mechanics.

[9]  M. Yovanovich,et al.  Finite-element solution procedures for solving the incompressible, Navier-Stokes equations using equal order variable interpolation , 1978 .

[10]  Robert L. Lee,et al.  A comparison of various mixed-interpolation finite elements in the velocity-pressure formulation of the Navier-Stokes equations☆ , 1978 .

[11]  Robert L. Lee,et al.  Smoothing techniques for certain primitive variable solutions of the Navier–Stokes equations , 1979 .

[12]  R. J. Schnipke,et al.  A monotone streamline upwind finite element method for convection-dominated flows , 1985 .

[13]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.