Microstructure and Biogeochemistry of the Organically Preserved Ediacaran Metazoan Sabellidites

Abstract Metazoans (multicellular animals) evolved during the Ediacaran Period as shown by the record of their imprints, carbonaceous compressions, trace fossils, and organic bodies and skeletal fossils. Initial evolutionary experiments produced unusual bodies that are poorly understood or conceived of as non-metazoan. It is accepted that sponges, ctenophorans, cnidarians, placozoans, and bilaterians were members of the Ediacaran fauna, many of which have uncertain affinities. The fossil Sabellidites cambriensis Yanishevsky, 1926, derived from the terminal Ediacaran strata, is the earliest known organically preserved animal that belonged to a newly evolving fauna, which replaced the Ediacara-type metazoans. Morphologically simple soft-bodied tubular fossils, such as S. cambriensis, and biomineralized, as contemporaneous Sinotubulites sp., are not easy to recognize phylogenetically because many unrelated organisms developed encasing tubes independently. Therefore, in addition to morphologic information, evidence derived from the microstructure of the organic wall and its biochemistry may be vital to resolving fossil origins and phylogenetic relationships. Here we present morphological, microstructural and biogeochemical studies on S. cambriensis using various microscopic and spectroscopic techniques, which provide new evidence that supports its siboglinid, annelidan affinity. The late Ediacaran age of Sabellidites fossil constrains the minimum age of siboglinids and the timing of the divergence of including them annelids by fossil record and this could be tested using molecular clock estimates. The fine microstructure of the organic tube in Sabellidites is multi-layered and has discrete layers composed of differently orientated and perfectly shaped fibers embedded in an amorphous matrix. The highly ordered and specific pattern of fiber alignment (i.e., the texture of organic matter) is similar to that of representatives of the family Siboglinidae. The biogeochemistry of the organic matter that comprised the tube, which was inferred from its properties, composition, and microstructure, is consistent with chitin and proteins as in siboglinids.

[1]  M. Moczydłowska Life Cycle of Early Cambrian Microalgae from the Skiagia-plexus acritarchs , 2010 .

[2]  A. Knoll,et al.  Sedimentary Controls on the Formation and Preservation of Microbial Mats in Siliciclastic Deposits: A Case Study from the Upper Neoproterozoic Nama Group, Namibia , 2002 .

[3]  M. Moczydłowska New records of late Ediacaran microbiota from Poland , 2008 .

[4]  M. Moczydłowska The Ediacaran microbiota and the survival of Snowball Earth conditions , 2008 .

[5]  A. Knoll,et al.  Oxygen, ecology, and the Cambrian radiation of animals , 2013, Proceedings of the National Academy of Sciences.

[6]  M. Laflamme,et al.  Reconstructing a Lost World: Ediacaran Rangeomorphs from Spaniard's Bay, Newfoundland , 2009 .

[7]  S. Xiao,et al.  On the eve of animal radiation: phylogeny, ecology and evolution of the Ediacara biota. , 2009, Trends in ecology & evolution.

[8]  K. Peters,et al.  The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments , 1992 .

[9]  S. Grant Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. , 1990, American journal of science.

[10]  S. Bengtson,et al.  Silicified and phosphatized Tianzhushania, spheroidal microfossils of possible animal origin from the Neoproterozoic of South China , 2004 .

[11]  S. Xiao,et al.  SYSTEMATIC DESCRIPTION AND PHYLOGENETIC AFFINITY OF TUBULAR MICROFOSSILS FROM THE EDIACARAN DOUSHANTUO FORMATION AT WENG’AN, SOUTH CHINA , 2008 .

[12]  J. Schiffbauer,et al.  Morphology and paleoecology of the late Ediacaran tubular fossil Conotubus hemiannulatus from the Gaojiashan Lagerstätte of southern Shaanxi Province, South China , 2011 .

[13]  A. Urbanek,et al.  The fine structure of zooidal tubes in Sabelliditida and Pogonophora with reference to their affinity , 1977 .

[14]  Andrew Steele,et al.  Polymeric substances and biofilms as biomarkers in terrestrial materials: Implications for extraterrestrial samples , 2000 .

[15]  F. Marone,et al.  Fossilized Nuclei and Germination Structures Identify Ediacaran “Animal Embryos” as Encysting Protists , 2011, Science.

[16]  Grant Sw Shell structure and distribution of Cloudina, a potential index fossil for the terminal Proterozoic. , 1990 .

[17]  B. Sokolov,et al.  Vendotaenids —Vendian Metaphytes , 1990 .

[18]  Kenneth E. Peters,et al.  Biomarkers and isotopes in the environment and human history , 2005 .

[19]  J. Peckmann,et al.  Late Carboniferous hydrocarbon-seep carbonates from the glaciomarine Dwyka Group, southern Namibia , 2008 .

[20]  G. Budd The earliest fossil record of the animals and its significance , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[21]  P. Vickers-Rich,et al.  The Rise and Fall of the Ediacaran Biota , 2007 .

[22]  B. Allard,et al.  Comparison of neutral lipid profile of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. , 2000, Phytochemistry.

[23]  J. Vinther,et al.  A molecular palaeobiological hypothesis for the origin of aplacophoran molluscs and their derivation from chiton-like ancestors , 2012, Proceedings of the Royal Society B: Biological Sciences.

[24]  The Proterozoic Biosphere: Modern Mat-Building Microbial Communities: a Key to the Interpretation of Proterozoic Stromatolitic Communities , 1992 .

[25]  J. Schiffbauer,et al.  Microbial biofilms and the preservation of the Ediacara biota , 2011 .

[26]  S. Xiao,et al.  Phosphatized Acanthomorphic Acritarchs and Related Microfossils from the Ediacaran Doushantuo Formation at Weng'an (South China) and their Implications for Biostratigraphic Correlation , 2014, Journal of Paleontology.

[27]  J. Antcliffe,et al.  CHARNIA AT 50: DEVELOPMENTAL MODELS FOR EDIACARAN FRONDS , 2008 .

[28]  D. Martill,et al.  Morphologic and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany , 2002 .

[29]  S. Morris,et al.  The Earliest Annelids: Lower Cambrian Polychaetes from the Sirius Passet Lagerstätte, Peary Land, North Greenland , 2008 .

[30]  S. Bengtson,et al.  Tube structure and original composition of Sinotubulites: shelly fossils from the late Neoproterozoic in southern Shaanxi, China , 2008 .

[31]  G. Cody,et al.  Molecular signature of chitin-protein complex in Paleozoic arthropods , 2011 .

[32]  Yuan-long Zhao,et al.  Basal Middle Cambrian Short-Stalked Eocrinoids from the Kaili Biota: Guizhou Province, China , 2008 .

[33]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[34]  H. Strauss,et al.  Ediacaran fossils from the Innerelv Member (late Proterozoic) of the Tanafjorden area, northeastern Finnmark , 1992, Geological Magazine.

[35]  R. Vrijenhoek,et al.  Are hydrothermal vent animals living fossils , 2003 .

[36]  J. Peckmann,et al.  WORM TUBES IN AN ALLOCHTHONOUS COLD-SEEP CARBONATE FROM LOWER OLIGOCENE ROCKS OF WESTERN WASHINGTON , 2000 .

[37]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[38]  Introduction to Fungi. , 1971 .

[39]  D. Briggs Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis , 1999 .

[40]  R. Raff,et al.  Embryo fossilization is a biological process mediated by microbial biofilms , 2008, Proceedings of the National Academy of Sciences.

[41]  N. Noffke The criteria for the biogeneicity of microbially induced sedimentary structures (MISS) in Archean and younger, sandy deposits , 2009 .

[42]  S. Bengtson,et al.  Eoandromeda and the origin of Ctenophora , 2011, Evolution & development.

[43]  R. Evershed,et al.  Chemical preservation of insect cuticle from the Pleistocene asphalt deposits of California, USA , 1997 .

[44]  Dierk Raabe,et al.  Discovery of a honeycomb structure in the twisted plywood patterns of fibrous biological nanocomposite tissue , 2005 .

[45]  R. Vrijenhoek,et al.  Sister-species of eastern Pacific hydrothermal vent worms (Ampharetidae, Alvinellidae, Vestimentifera) provide new mitochondrial COI clock calibration , 2002 .

[46]  G. Purschke,et al.  Morphology, molecules, evolution and phylogeny in polychaeta and related taxa , 2005 .

[47]  B. Sokolov,et al.  The Vendian System , 1990 .

[48]  J. Peckmann,et al.  Mineralization of vestimentiferan tubes at methane seeps on the Congo deep-sea fan , 2009 .

[49]  V. Korkutis Late Precambrian and Early Cambrian in the East European platform , 1981 .

[50]  J. W. Valentine Seeing ghosts: Neoproterozoic bilaterian body plans , 2007 .

[51]  R. F. Reinfrank,et al.  Numerical ages of volcanic rocks and the earliest fauna1 zone within the Late Precambrian of east Poland , 1995, Journal of the Geological Society.

[52]  R. Evershed,et al.  Preservation of Chitin in 25-Million-Year-Old Fossils , 1997 .

[53]  D. Erwin,et al.  The Cambrian Conundrum: Early Divergence and Later Ecological Success in the Early History of Animals , 2011, Science.

[54]  K. Halanych Molecular phylogeny of siboglinid annelids (a.k.a. pogonophorans) : a review , 2005 .

[55]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[56]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[57]  M. Droser,et al.  Problematica, Trace Fossils, and Tubes within the Ediacara Member (South Australia): Redefining the Ediacaran Trace Fossil Record One Tube at a Time , 2011, Journal of Paleontology.

[58]  G. Rouse,et al.  Cladistics and polychaetes , 1997 .

[59]  J. Schopf,et al.  The Proterozoic Biosphere: The Proterozoic Biosphere , 1992 .

[60]  J. Ruiz-Herrera,et al.  Evolution and phylogenetic relationships of chitin synthases from yeasts and fungi. , 2002, FEMS yeast research.

[61]  Philip C. J. Donoghue,et al.  Evolving form and function: fossils and development , 2005 .

[62]  J. Gehling,et al.  The first named Ediacaran body fossil, Aspidella Terranovica , 2000 .

[63]  H. Felbeck Chemoautotrophic Potential of the Hydrothermal Vent Tube Worm, Riftia pachyptila Jones (Vestimentifera). , 1981, Science.

[64]  N. Butterfield Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale , 1990, Paleobiology.

[65]  R. Petrovich Mechanisms of Fossilization of the Soft-Bodied and Lightly Armored Faunas of the Burgess Shale and of Some Other Classical Localities , 2001 .

[66]  A. Seilacher,et al.  Underground Vendobionta From Namibia , 2002 .

[67]  D. Briggs,et al.  Cambrian Burgess Shale–type deposits share a common mode of fossilization , 2008 .

[68]  A. Knoll,et al.  Doushantuo embryos preserved inside diapause egg cysts , 2007, Nature.

[69]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[70]  N. Butterfield Secular distribution of Burgess‐Shale‐type preservation , 1995 .

[71]  Alan D. Mathios,et al.  A Multidisciplinary Approach , 2008 .

[72]  J. Antcliffe,et al.  Decoding the Ediacaran Enigma , 2004, Science.

[73]  F. Gaill,et al.  Tubes of deep sea hydrothermal vent worms Riftia pachyptila (Vestimentifera) and Alvinella pompejana (Annelida) , 1986 .

[74]  R. Evershed,et al.  Alternative origin of aliphatic polymer in kerogen , 2000 .

[75]  S. Xiao,et al.  On the Morphological and Ecological History of Proterozoic Macroalgae , 2006 .

[76]  D. Grazhdankin Patterns of distribution in the Ediacaran biotas: facies versus biogeography and evolution , 2004, Paleobiology.

[77]  D. Grazhdankin,et al.  Carbonate-hosted Avalon-type fossils in arctic Siberia , 2008 .

[78]  M. Fedonkin The Rise of Animals: Evolution and Diversification of the Kingdom Animalia , 2008 .

[79]  D. McIlroy,et al.  Ediacaran fossil preservation: Taphonomy and diagenesis of a discoid biota from the Amadeus Basin, central Australia , 2006 .

[80]  M. Fedonkin,et al.  The white sea's windswept coasts , 2007 .

[81]  M. Laflamme,et al.  Ecological Tiering and the Evolution of a Stem: The Oldest Stemmed Frond from the Ediacaran of Newfoundland, Canada , 2012, Journal of Paleontology.

[82]  J William Schopf,et al.  Raman imagery: a new approach to assess the geochemical maturity and biogenicity of permineralized precambrian fossils. , 2005, Astrobiology.

[83]  Natascha Hill,et al.  Phylogenomic analyses unravel annelid evolution , 2011, Nature.

[84]  B. Pratt,et al.  Embryonic Development of a Middle Cambrian (500 Myr Old) Scalidophoran Worm , 2011, Journal of Paleontology.

[85]  B. Sokolov,et al.  Systematic Description of Vendian Metazoa , 1990 .

[86]  A. J. Kaufman,et al.  Neoproterozoic geobiology and paleobiology , 2006 .

[87]  J. Peckmann,et al.  Worm tube fossils from the Hollard Mound hydrocarbon-seep deposit, Middle Devonian, Morocco: Palaeozoic seep-related vestimentiferans? , 2005 .

[88]  S. Bengtson Early life on earth , 1994 .

[89]  J. Gehling,et al.  Life after snowball: The oldest complex Ediacaran fossils , 2003 .

[90]  G. Versteegh,et al.  Resistant macromolecules of extant and fossil microalgae , 2004 .

[91]  J. Sugiyama,et al.  Structural study of α chitin from the grasping spines of the arrow worm ( Sagitta spp. ) , 1995 .

[92]  F. Gaill,et al.  Microvilli-like Structures Secreting Chitin Crystallites , 1993 .

[93]  J. Rouzaud,et al.  The 3.466 Ga "Kitty's Gap Chert," an early Archean microbial ecosystem , 2006 .

[94]  C. Walters,et al.  The Biomarker Guide , 2004 .

[95]  J. Reitner,et al.  Evidence of organic structures in Ediacara-type fossils and associated microbial mats , 2001 .

[96]  R. Sibson,et al.  Bilaterian Burrows and Grazing Behavior at >585 Million Years Ago , 2012 .

[97]  D. Raabe,et al.  Mesostructure of the Exoskeleton of the Lobster Homarus Americanus , 2005 .

[98]  J. Sugiyama,et al.  The chitin system in the tubes of deep sea hydrothermal vent worms , 1992 .

[99]  S. Jensen,et al.  Assemblage palaeoecology of the Ediacara biota: The unabridged edition? , 2006 .

[100]  S. Jensen,et al.  A new species of Cloudina from the terminal Ediacaran of Spain , 2010 .

[101]  G. Southam,et al.  The Early Record of Life , 2013 .

[102]  H. Strauss,et al.  Carbon isotope geochemistry and palaeontology of Neoproterozoic to early Cambrian siliciclastic successions in the East European Platform, Poland , 1997, Geological Magazine.

[103]  Yuan-long Zhao,et al.  Eight-armed Ediacara fossil preserved in contrasting taphonomic windows from China and Australia , 2008 .

[104]  Yuan-long Zhao,et al.  Cambrian Burgess Shale-type Lagerstätten in South China: Distribution and significance , 2008 .

[105]  Derek E. G. Briggs,et al.  THE ROLE OF DECAY AND MINERALIZATION IN THE PRESERVATION OF SOFT-BODIED FOSSILS , 2003 .

[106]  James W. Valentine,et al.  On the Origin of Phyla , 2004 .

[107]  S. Hirano,et al.  Chitin and Chitosan , 2002 .

[108]  B. Pratt,et al.  Borings in Cloudina Shells: Complex Predator-Prey Dynamics in the Terminal Neoproterozoic , 2003 .

[109]  M. McMenamin The Cambrian Explosion: The Construction of Animal Biodiversity. , 2013 .

[110]  M. Mastalerz,et al.  Biodegradation of the chitin-protein complex in crustacean cuticle , 1998 .

[111]  M. Maldonado,et al.  First evidence of chitin as a component of the skeletal fibers of marine sponges. Part I. Verongidae (demospongia: Porifera). , 2007, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[112]  R. Hazen,et al.  Earth's earliest microbial mats in a siliciclastic marine environment (2.9 Ga Mozaan Group, South Africa) , 2003 .

[113]  B. Jørgensen,et al.  Solar Lake (Sinai). 5. The sulfur cycle of the bcnthic cyanobacterial mats1 , 1977 .

[114]  A. Seilacher The nature of vendobionts , 2007 .

[115]  D. Siveter,et al.  The Cambrian Fossils of Chengjiang, China: The Flowering of Early Animal Life , 2004 .

[116]  P. Dando,et al.  Shipwrecked tube worms , 1992, Nature.

[117]  G. Vidal,et al.  Trace elements and Sr and C isotopic signatures in late Neoproterozoic and earliest Cambrian sedimentary organic matter from siliciclastic successions in the East European Platform , 1998, Geological Magazine.

[118]  B. Sokolov The Vendian System: Vol.2 Regional Geology , 2011 .

[119]  C. Gerday,et al.  Chitin and Protein Contents in the Tubes of Vestimentiferans from Hydrothermal Vents , 1992 .

[120]  J. Zalasiewicz,et al.  Ubiquitous Burgess Shale-style 'clay templates' in low-grade metamorphic mudrocks , 2008 .

[121]  J. Ortega‐Hernández,et al.  Burgess Shale-Type Microfossils from the Middle Cambrian Kaili Formation, Guizhou Province, China , 2012 .

[122]  D. Bottjer,et al.  Taphonomy : process and bias through time , 2011 .

[123]  J. Childress,et al.  Chitin Localization in the Tube Secretion System of a Repressurized Deep-Sea Tube Worm , 1995 .

[124]  C. Junyuan,et al.  Biology of the Chengjiang Fauna , 1997 .

[125]  R. Evershed,et al.  Recognition of chitin and proteins in invertebrate cuticles using analytical pyrolysis/gas chromatography and pyrolysis/gas chromatography/mass spectrometry. , 1996, Rapid communications in mass spectrometry : RCM.

[126]  B. Pratt,et al.  Middle Cambrian Arthropod Embryos with Blastomeres , 1994, Science.

[127]  Xunlai Yuan,et al.  The advent of mineralized skeletons in Neoproterozoic Metazoa—new fossil evidence from the Gaojiashan Fauna , 2007 .

[128]  J. Grotzinger,et al.  The youngest Ediacaran fossils from Southern Africa , 1997, Journal of Paleontology.

[129]  S. Xiao,et al.  Restudy of the worm-like carbonaceous compression fossils Protoarenicola, Pararenicola, and Sinosabellidites from early Neoproterozoic successions in North China , 2008 .

[130]  N. Butterfield,et al.  FOSSIL DIAGENESIS IN THE BURGESS SHALE , 2007 .

[131]  N. Butterfield,et al.  Small carbonaceous fossils (SCFs): A new measure of early Paleozoic paleobiology , 2012 .

[132]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[133]  D. Briggs,et al.  Taphonomy of Animal Organic Skeletons Through Time , 2011 .

[134]  J. Gehling Microbial mats in terminal Proterozoic siliciclastics; Ediacaran death masks , 1999 .