Efficient Acquisition and Realistic Rendering of Car Paint

The outside appearance of cars is mostly defined through only two distinct materials – glass and car paint. While glass can rather easily be simulated by the simple physical laws of reflection and refraction, modelling car paint is more challenging. In this paper we present a framework for the efficient acquisition and realistic rendering of realworld car paint. This is achieved by building an easy-to-reproduce measuring setup, fitting the measured data to a general BRDF model for car paint, adding a component for simulating the sparkling effect of metallic paints, and rendering using a specially designed shader in a realtime ray tracer.

[1]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[2]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[3]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[4]  Karol Myszkowski,et al.  Reverse engineering approach to appearance-based design of metallic and pearlescent paints , 2004, The Visual Computer.

[5]  James T. Kajiya,et al.  The rendering equation , 1998 .

[6]  Serge J. Belongie,et al.  Structured importance sampling of environment maps , 2003, ACM Trans. Graph..

[7]  Hans-Peter Seidel,et al.  Building a Photo Studio for Measurement Purposes , 2000, VMV.

[8]  Markus Wagner,et al.  Interactive Rendering with Coherent Ray Tracing , 2001, Comput. Graph. Forum.

[9]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[10]  S. Marschner,et al.  Inverse Rendering for Computer Graphics , 1998 .

[11]  William L. Martens,et al.  Simulation of sparkling and depth effect in paints , 2003, SCCG '03.

[12]  Sergey Ershov,et al.  Simulation of sparkles in metallic paints , 1999 .

[13]  Paul E. Debevec,et al.  Rendering synthetic objects into real scenes: bridging traditional and image-based graphics with global illumination and high dynamic range photography , 1998, SIGGRAPH '08.

[14]  Frédo Durand,et al.  Experimental validation of analytical BRDF models , 2004, SIGGRAPH '04.

[15]  Ingo Wald,et al.  Realtime ray tracing and interactive global illumination , 2004, Ausgezeichnete Informatikdissertationen.

[16]  Jean-Yves Bouguet,et al.  Camera calibration toolbox for matlab , 2001 .

[17]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[18]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[19]  Robert L. Stevenson,et al.  Estimation-theoretic approach to dynamic range enhancement using multiple exposures , 2003, J. Electronic Imaging.

[20]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[21]  Alexander Keller,et al.  Efficient Illumination by High Dynamic Range Images , 2003, Rendering Techniques.

[22]  Kellogg S. Booth,et al.  Report from the chair , 1986 .

[23]  Eric P. Lafortune,et al.  Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .

[24]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[25]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[26]  Karol Myszkowski,et al.  Rendering Pearlescent Appearance Based On Paint‐Composition Modelling , 2001, Comput. Graph. Forum.

[27]  Csaba Kelemen,et al.  A Microfacet Based Coupled Specular-Matte BRDF Model with Importance Sampling , 2001, Eurographics.