Ozone isotopic composition: an angular effect in scattering processes?

The ratio of the differential scattering cross sections involving distinguishable and indistinguishable isotopes may exhibit non-mass dependent angular variations. A numerical application of this hypotheses to the ozone reaction rates reproduces some of the results observed in laboratory experiments. This theory could be tested through a cross beam experiment where the isotopic composition of the scattered products is recorded as a function of their scattering angles.

[1]  D. Krankowsky,et al.  Isotopic measurements of stratospheric ozone , 2000 .

[2]  M. Bitter,et al.  Multi-isotope study of fractionation effects in the ozone formation process , 2000 .

[3]  Sørensen,et al.  Measurements of (18)O-Enriched Ozone Isotopomer Abundances Using High-Resolution Fourier Transform Far-IR Spectroscopy. , 2000, Journal of molecular spectroscopy.

[4]  R. Marcus,et al.  An intramolecular theory of the mass-independent isotope effect for ozone. I , 1999 .

[5]  M. Thiemens,et al.  Mass-independent isotope effects in planetary atmospheres and the early solar system. , 1999, Science.

[6]  Erbacher,et al.  Ozone isotope enrichment: isotopomer-specific rate coefficients , 1999, Science.

[7]  Robert B. Walker,et al.  Three-body collision contributions to recombination and collision-induced dissociation. I. Cross sections , 1998 .

[8]  Harro A. J. Meijer,et al.  The use of electrolysis for accurate delta O-17 and delta O-18 isotope measurements in water , 1998 .

[9]  R. T. Pack,et al.  Three-Body Collision Contributions to Recombination and Collision-Induced Dissociation. II. Kinetics , 1998 .

[10]  C. Rinsland,et al.  Isotopic ozone in the 5 μ region from high resolution balloon-borne and ground-based ftir solar spectra , 1998 .

[11]  O. Nielsen,et al.  Kinetic study of the formation of isotopically substituted ozone in argon , 1998 .

[12]  K. Mauersberger,et al.  Surprising rate coefficients for four isotopic variants of O+O2+M , 1997 .

[13]  C. Camy‐Peyret,et al.  Photolysis of ozone at 693 nm in solid oxygen. Isotopic effects in ozone reformation , 1997 .

[14]  G. I. Gellene An Explanation for Symmetry-Induced Isotopic Fractionation in Ozone , 1996, Science.

[15]  W. Trogler,et al.  Photopolymerization and Mass-Independent Sulfur Isotope Fractionations in Carbon Disulfide , 1996, Science.

[16]  G. Sørensen,et al.  Far-IR Spectroscopy of Ozone as a Means of Quantification of Ozone Isotopomers , 1996 .

[17]  L. K. Christensen,et al.  First direct kinetic study of isotopic enrichment of ozone , 1995 .

[18]  K. Mauersberger,et al.  Ozone absorption spectroscopy in search of low‐lying electronic states , 1995 .

[19]  J. Stehr,et al.  Multi-isotope study of ozone: Implications for the heavy ozone anomaly , 1993 .

[20]  Konrad Mauersberger,et al.  Measurement of isotopic abundances in collected stratospheric ozone samples , 1990 .

[21]  F. Robert,et al.  Reply to comment by M. Sund on ``A non-mass-dependent isotopic fractionation effect'' , 1990 .

[22]  M. Thiemens,et al.  Pressure dependency for heavy isotope enhancement in ozone formation , 1990 .

[23]  K. Mauersberger,et al.  Laboratory studies of heavy ozone , 1990 .

[24]  Frank J. Murcray,et al.  Isotopic abundances of stratopheric ozone from balloon‐borne high‐resolution infrared solar spectra , 1989 .

[25]  K. Mauersberger,et al.  Laboratory measurements of ozone isotopomers by tunable diode laser absorption spectroscopy , 1989 .

[26]  K. Mauersberger,et al.  Oxygen fractionation of ozone isotopes 48O3 through 54O3 , 1989 .

[27]  F. Robert,et al.  A non-mass-dependent isotopic fractionation effect , 1988 .

[28]  Mian M. Abbas,et al.  Heavy ozone distribution in the stratosphere from far-infrared observations , 1987 .

[29]  S. Epstein,et al.  The effect of the isotopic composition of oxygen on the non-mass-dependent isotopic fractionation in the formation of ozone by discharge of O2. [from meteorites] , 1987 .

[30]  J. Valentini Mass‐independent isotopic fractionation in nonadiabatic molecular collisions , 1987 .

[31]  M. Thiemens,et al.  Production of isotopically heavy ozone by ultraviolet light photolysis of O2 , 1987 .

[32]  Jack A. Kaye,et al.  Theoretical analysis of isotope effects on ozone formation in oxygen photochemistry , 1986 .

[33]  M. Thiemens,et al.  A non‐mass‐dependent oxygen isotope effect in the production of ozone from molecular oxygen: The role of molecular symmetry in isotope chemistry , 1986 .

[34]  F. S. Klein,et al.  Kinetics of the isotope exchange reaction of 18O with NO and O2 at 298 K , 1985 .

[35]  M. Molina,et al.  Chemical kinetics and photochemical data for use in stratospheric modeling , 1985 .

[36]  D. Strobel,et al.  Enhancement of heavy ozone in the Earth's atmosphere? , 1983 .

[37]  M. Thiemens,et al.  The Mass-Independent Fractionation of Oxygen: A Novel Isotope Effect and Its Possible Cosmochemical Implications , 1983, Science.

[38]  Konrad Mauersberger,et al.  Measurement of heavy ozone in the stratosphere , 1981 .

[39]  R. Cicerone,et al.  Photodissociation of isotopically heavy O 2 as a source of atmospheric O 3 , 1980 .

[40]  R. Clayton,et al.  A Component of Primitive Nuclear Composition in Carbonaceous Meteorites , 1973, Science.

[41]  J. Kelso,et al.  M Effect in the Gas‐Phase Recombination of O with O2 , 1967 .

[42]  J. Herron,et al.  Erratum: Mass‐Spectrometric Study of the Reactions of O Atoms with NO and NO2 , 1966 .

[43]  F. Robert,et al.  Oxygen isotopic homogeneity of the Earth: new evidence , 1992 .

[44]  K. Mauersberger,et al.  Heavy ozone anomaly: Evidence for a mysterious mechanism , 1992 .

[45]  D. R. Bates Suggested explanation of heavy ozone , 1988 .

[46]  Konrad Mauersberger,et al.  Ozone isotope measurements in the stratosphere , 1987 .

[47]  J. Bigeleisen The Relative Reaction Velocities of Isotopic Molecules , 1949 .

[48]  H. Urey,et al.  The thermodynamic properties of isotopic substances. , 1947, Journal of the Chemical Society.