Size controlled Pt over mesoporous NiO nanocomposite catalysts: thermal catalysis vs. photocatalysis

[1]  L. Pino,et al.  CO and CO2 methanation over Ni catalysts supported on CeO2, Al2O3 and Y2O3 oxides , 2020 .

[2]  Qinhui Wang,et al.  Emission and control of flue gas pollutants in CO2 chemical absorption system – A review , 2020 .

[3]  Á. Kukovecz,et al.  Ni–Zn–Al-Based Oxide/Spinel Nanostructures for High Performance, Methane-Selective CO2 Hydrogenation Reactions , 2019, Catalysis Letters.

[4]  Hongbing Ji,et al.  CO2 methanation on Co/TiO2 catalyst: Effects of Y on the support , 2019 .

[5]  J. Navarro,et al.  Size-tailored Ru nanoparticles deposited over γ-Al2O3 for the CO2 methanation reaction , 2019, Applied Surface Science.

[6]  T. Varga,et al.  Noble-metal-free and Pt nanoparticles-loaded, mesoporous oxides as efficient catalysts for CO2 hydrogenation and dry reforming with methane , 2019, Journal of CO2 Utilization.

[7]  S. Ueda,et al.  Highly durable Ru catalysts supported on CeO2 nanocomposites for CO2 methanation , 2019, Applied Catalysis A: General.

[8]  Minhua Zhang,et al.  The synergistic effect of Pd NPs and UiO-66 for enhanced activity of carbon dioxide methanation , 2019, Journal of CO2 Utilization.

[9]  Suresh Mutyala,et al.  CO2 capture and adsorption kinetic study of amine-modified MIL-101 (Cr) , 2019, Chemical Engineering Research and Design.

[10]  F. Fresno,et al.  On the selectivity of CO2 photoreduction towards CH4 using Pt/TiO2 catalysts supported on mesoporous silica , 2018, Applied Catalysis B: Environmental.

[11]  A. Veen,et al.  Metal-oxide interaction enhanced CO2 activation in methanation over ceria supported nickel nanocrystallites , 2018, Applied Catalysis B: Environmental.

[12]  Peng Sun,et al.  Nanosheet-assembled NiO microspheres modified by Sn2+ ions isovalent interstitial doping for xylene gas sensors , 2018, Sensors and Actuators B: Chemical.

[13]  Candace K. Chan,et al.  Fullerene stabilized gold nanoparticles supported on titanium dioxide for enhanced photocatalytic degradation of methyl orange and catalytic reduction of 4-nitrophenol , 2018 .

[14]  Hongmei Xie,et al.  CO2 hydrogenation to methane over mesoporous Co/SiO2 catalysts: Effect of structure , 2018, Journal of CO2 Utilization.

[15]  Yousung Jung,et al.  Adsorbate-driven reactive interfacial Pt-NiO1−x nanostructure formation on the Pt3Ni(111) alloy surface , 2018, Science Advances.

[16]  S. Back,et al.  Boosting hot electron flux and catalytic activity at metal–oxide interfaces of PtCo bimetallic nanoparticles , 2018, Nature Communications.

[17]  Shurong Wang,et al.  CO2 methanation on the catalyst of Ni/MCM-41 promoted with CeO2. , 2018, The Science of the total environment.

[18]  Á. Kukovecz,et al.  In Situ DRIFTS and NAP-XPS Exploration of the Complexity of CO2 Hydrogenation over Size-Controlled Pt Nanoparticles Supported on Mesoporous NiO , 2018 .

[19]  Haifeng Zhou,et al.  CO2 methanation over ordered mesoporous NiRu-doped CaO-Al2O3 nanocomposites with enhanced catalytic performance , 2018 .

[20]  Mehrab Mehrvar,et al.  Photocatalytic degradation of aqueous Methyl Orange using nitrogen-doped TiO2 photocatalyst prepared by novel method of ultraviolet-assisted thermal synthesis. , 2017, Journal of environmental sciences.

[21]  V. Dubois,et al.  CO2 methanation on Ru/TiO2 catalysts: on the effect of mixing anatase and rutile TiO2 supports , 2018 .

[22]  G. Marnellos,et al.  Effect of support nature on the cobalt-catalyzed CO2 hydrogenation , 2017 .

[23]  P. Panagiotopoulou Hydrogenation of CO2 over supported noble metal catalysts , 2017 .

[24]  Xu-xu Zheng,et al.  Methanation of carbon dioxide over Ni/CeO2 catalysts: Effects of support CeO2 structure , 2017 .

[25]  Qing Liu,et al.  One-pot synthesis of NiO/SBA-15 monolith catalyst with a three-dimensional framework for CO2 methanation , 2017 .

[26]  Á. Kukovecz,et al.  Photoelectrical response of mesoporous nickel oxide decorated with size controlled platinum nanoparticles under argon and oxygen gas , 2017 .

[27]  M. Salavati‐Niasari,et al.  Step synthesis and photocatalytic activity of NiO/graphene nanocomposite under UV and visible light as an effective photocatalyst , 2017 .

[28]  Loredana Magistri,et al.  Methanation of carbon dioxide on Ru/Al2O3: Catalytic activity and infrared study , 2016 .

[29]  G. Patriarche,et al.  Selective CO2 methanation on Ru/TiO2 catalysts: unravelling the decisive role of the TiO2 support crystal structure , 2016 .

[30]  Ping Liu,et al.  CO2 hydrogenation on Pt, Pt/SiO2 and Pt/TiO2: Importance of synergy between Pt and oxide support , 2016 .

[31]  G. Somorjai,et al.  Role of hot electrons and metal-oxide interfaces in surface chemistry and catalytic reactions. , 2015, Chemical reviews.

[32]  G. Somorjai,et al.  Enhanced CO oxidation rates at the interface of mesoporous oxides and Pt nanoparticles. , 2013, Journal of the American Chemical Society.

[33]  Anne-Cécile Roger,et al.  Catalytic CO2 valorization into CH4 on Ni-based ceria-zirconia. Reaction mechanism by operando IR spectroscopy , 2013 .

[34]  Hongmei Xie,et al.  Effects of structure on the carbon dioxide methanation performance of Co-based catalysts , 2013 .

[35]  R. Saravanan,et al.  Enhanced photocatalytic activity of ZnO/CuO nanocomposite for the degradation of textile dye on visible light illumination. , 2013, Materials science & engineering. C, Materials for biological applications.

[36]  P. Ruiz,et al.  CO2 hydrogenation at low temperature over Rh/gamma-Al2O3 catalysts: effect of the metal particle size on catalytic performances and reaction mechanism , 2012 .

[37]  Youssef Belmabkhout,et al.  Flue gas treatment via CO2 adsorption , 2011 .

[38]  N. Hosny Synthesis, characterization and optical band gap of NiO nanoparticles derived from anthranilic acid precursors via a thermal decomposition route , 2011 .

[39]  G. Centi,et al.  Opportunities and prospects in the chemical recycling of carbon dioxide to fuels , 2009 .

[40]  Eric W. McFarland,et al.  A highly dispersed Pd-Mg/SiO2 catalyst active for methanation of CO2 , 2009 .

[41]  C. Fernández,et al.  Nanostructural and optical properties of cobalt and nickel-oxide/silica nanocomposites , 2006 .

[42]  Iwao Omae,et al.  Aspects of carbon dioxide utilization , 2006 .

[43]  K. Sing Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984) , 1985 .

[44]  K. Koller,et al.  Combined action of metal and semiconductor catalysts , 1968 .