Numerical investigation of negative refractive index metamaterials at infrared and optical frequencies

Abstract An analysis of the transmission properties of a slab of metallic split-ring resonators at near infrared and optical frequencies is presented. We focus on the influence of the parameters characterizing the intrinsic frequency dispersion of the metallic rings on the physical properties of recently introduced materials that exhibit a negative refractive index. It is demonstrated that, when a mesh of thin metallic wires is added, at the resonant frequency ω 0 ∼150 THz the refractive index of the resulting metamaterial is negative within a frequency band ▵ ω ∼50 THz. The numerical analysis is performed using the transfer matrix formalism.

[1]  J. Pendry,et al.  Magnetic activity at infrared frequencies in structured metallic photonic crystals , 2002 .

[2]  V. Veselago The Electrodynamics of Substances with Simultaneously Negative Values of ∊ and μ , 1968 .

[3]  R Ruppin,et al.  Surface polaritons of a left-handed material slab , 2001 .

[4]  J. Kong,et al.  Power propagation in homogeneous isotropic frequency-dispersive left-handed media. , 2002, Physical review letters.

[5]  C. Soukoulis,et al.  Numerical studies of left-handed materials and arrays of split ring resonators. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Ekmel Ozbay,et al.  Transmission properties of composite metamaterials in free space , 2002 .

[7]  V. Veselago,et al.  Электродинамика веществ с одновременно отрицательными значениями ε и μ , 1967 .

[8]  R. Ruppin,et al.  Surface polaritons of a left-handed medium , 2000 .

[9]  A. J. Ward,et al.  A program for calculating photonic band structures and transmission coefficients of complex structures , 1995 .

[10]  J. Pendry,et al.  Low frequency plasmons in thin-wire structures , 1998 .

[11]  C. Soukoulis,et al.  Transmission studies of left-handed materials , 2001, cond-mat/0105618.

[12]  Alexei A. Maradudin,et al.  Scattering properties of a cylinder fabricated from a left-handed material , 2002 .

[13]  J. Pendry,et al.  Negative refraction makes a perfect lens , 2000, Physical review letters.

[14]  R. Shelby,et al.  Experimental Verification of a Negative Index of Refraction , 2001, Science.

[15]  R M Walser,et al.  Comment on "extremely low frequency plasmons in metallic mesostructures". , 2001, Physical review letters.

[16]  R M Walser,et al.  Wave refraction in negative-index media: always positive and very inhomogeneous. , 2002, Physical review letters.

[17]  H. Lezec,et al.  Extraordinary optical transmission through sub-wavelength hole arrays , 1998, Nature.

[18]  R A Linke,et al.  Beaming Light from a Subwavelength Aperture , 2002, Science.

[19]  J. Pendry,et al.  Calculation of photon dispersion relations. , 1992, Physical review letters.

[20]  V. Podolskiy,et al.  PLASMON MODES IN METAL NANOWIRES AND LEFT-HANDED MATERIALS , 2002 .

[21]  David R. Smith,et al.  Microwave transmission through a two-dimensional, isotropic, left-handed metamaterial , 2001 .

[22]  David R. Smith,et al.  Negative refraction of modulated electromagnetic waves , 2002 .

[23]  John B. Pendry,et al.  Photonic Band Structures , 1994 .

[24]  Richard M. Osgood,et al.  Direct Observation of the Local-Field-Enhanced Surface Photochemical Reactions , 1983 .

[25]  N Garcia,et al.  Left-handed materials do not make a perfect lens. , 2002, Physical review letters.

[26]  D. Smith,et al.  Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients , 2001, physics/0111203.

[27]  R. J. Bell,et al.  Optical properties of fourteen metals in the infrared and far infrared: Al, Co, Cu, Au, Fe, Pb, Mo, Ni, Pd, Pt, Ag, Ti, V, and W. , 1985, Applied optics.

[28]  R. Ziolkowski,et al.  Wave propagation in media having negative permittivity and permeability. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  R. Ruppin Extinction properties of a sphere with negative permittivity and permeability , 2000 .

[30]  D. Forester,et al.  Calculations and measurements of wire and/or split-ring negative index media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  G. Dewar Candidates for μ<0, ∊<0 Nanostructures , 2001 .

[32]  J. Pendry,et al.  Magnetism from conductors and enhanced nonlinear phenomena , 1999 .

[33]  Stewart,et al.  Extremely low frequency plasmons in metallic mesostructures. , 1996, Physical review letters.

[34]  Steven G. Johnson,et al.  All-angle negative refraction in a three-dimensionally periodic photonic crystal , 2002 .

[35]  N Garcia,et al.  Is there an experimental verification of a negative index of refraction yet? , 2002, Optics letters.

[36]  R. J. Bell,et al.  Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared. , 1983, Applied optics.

[37]  Willie J Padilla,et al.  Composite medium with simultaneously negative permeability and permittivity , 2000, Physical review letters.