Molecular Processes Studied at a Single-Molecule Level Using DNA Origami Nanostructures and Atomic Force Microscopy

DNA origami nanostructures allow for the arrangement of different functionalities such as proteins, specific DNA structures, nanoparticles, and various chemical modifications with unprecedented precision. The arranged functional entities can be visualized by atomic force microscopy (AFM) which enables the study of molecular processes at a single-molecular level. Examples comprise the investigation of chemical reactions, electron-induced bond breaking, enzymatic binding and cleavage events, and conformational transitions in DNA. In this paper, we provide an overview of the advances achieved in the field of single-molecule investigations by applying atomic force microscopy to functionalized DNA origami substrates.

[1]  Jean-Louis Mergny,et al.  HIV-1 nucleocapsid proteins as molecular chaperones for tetramolecular antiparallel G-quadruplex formation. , 2013, Journal of the American Chemical Society.

[2]  Philip Tinnefeld,et al.  Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas , 2012, Science.

[3]  Hao Yan,et al.  DNA Origami: A Quantum Leap for Self‐Assembly of Complex Structures , 2012 .

[4]  N. Green Avidin. , 1975, Advances in protein chemistry.

[5]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[6]  J. Kjems,et al.  Single molecule microscopy methods for the study of DNA origami structures , 2011, Microscopy research and technique.

[7]  Tim Liedl,et al.  Distance dependence of single-fluorophore quenching by gold nanoparticles studied on DNA origami. , 2012, ACS nano.

[8]  Hao Yan,et al.  Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. , 2014, Nature nanotechnology.

[9]  G. Parkinson,et al.  The structure of telomeric DNA. , 2003, Current opinion in structural biology.

[10]  Gregg M. Gallatin,et al.  Nanomanufacturing with DNA Origami: Factors Affecting the Kinetics and Yield of Quantum Dot Binding , 2012 .

[11]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[12]  Hao Yan,et al.  Gold nanoparticle self-similar chain structure organized by DNA origami. , 2010, Journal of the American Chemical Society.

[13]  Tao Zhang,et al.  DNA origami based assembly of gold nanoparticle dimers for surface-enhanced Raman scattering , 2014, Nature Communications.

[14]  J. Hildebrand,et al.  Using laser scanning confocal microscopy as a guide for electron microscopic study: a simple method for correlation of light and electron microscopy. , 1995, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[15]  Y. Harada,et al.  Direct visualization of the movement of a single T7 RNA polymerase and transcription on a DNA nanostructure. , 2012, Angewandte Chemie.

[16]  Sheng Li,et al.  Accurate Quantification of microRNA via Single Strand Displacement Reaction on DNA Origami Motif , 2013, PloS one.

[17]  Masayuki Endo,et al.  Visualization of dynamic conformational switching of the G-quadruplex in a DNA nanostructure. , 2010, Journal of the American Chemical Society.

[18]  Prakash Shrestha,et al.  Single-molecule mechanochemical sensing using DNA origami nanostructures. , 2014, Angewandte Chemie.

[19]  Chunhai Fan,et al.  Molecular threading and tunable molecular recognition on DNA origami nanostructures. , 2013, Journal of the American Chemical Society.

[20]  Eiji Nakata,et al.  Zinc-finger proteins for site-specific protein positioning on DNA-origami structures. , 2012, Angewandte Chemie.

[21]  Masayuki Endo,et al.  State-of-the-art high-speed atomic force microscopy for investigation of single-molecular dynamics of proteins. , 2014, Chemical reviews.

[22]  S. Pimblott,et al.  Production of low-energy electrons by ionizing radiation , 2007 .

[23]  Ramon Eritja,et al.  DNA origami as a DNA repair nanosensor at the single-molecule level. , 2013, Angewandte Chemie.

[24]  Pierre Cloutier,et al.  DNA strand breaks induced by 0-4 eV electrons: the role of shape resonances. , 2004, Physical review letters.

[25]  D. Hunting,et al.  Resonant formation of DNA strand breaks by low-energy (3 to 20 eV) electrons. , 2000, Science.

[26]  Hao Yan,et al.  Spatially addressable multiprotein nanoarrays templated by aptamer-tagged DNA nanoarchitectures. , 2007, Journal of the American Chemical Society.

[27]  Hao Yan,et al.  Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. , 2012, Journal of the American Chemical Society.

[28]  Ralf Jungmann,et al.  DNA origami as a nanoscopic ruler for super-resolution microscopy. , 2009, Angewandte Chemie.

[29]  Masayuki Endo,et al.  Regulation of DNA methylation using different tensions of double strands constructed in a defined DNA nanostructure. , 2010, Journal of the American Chemical Society.

[30]  Adrian Keller,et al.  DNA Origami Substrates for Highly Sensitive Surface-Enhanced Raman Scattering , 2013 .

[31]  David Neff,et al.  NTA directed protein nanopatterning on DNA Origami nanoconstructs. , 2009, Journal of the American Chemical Society.

[32]  Wael Mamdouh,et al.  Single-molecule chemical reactions on DNA origami. , 2010, Nature nanotechnology.

[33]  Kurt V Gothelf,et al.  Probing electron-induced bond cleavage at the single-molecule level using DNA origami templates. , 2012, ACS nano.

[34]  Keiyu Ou,et al.  DNA origami based visualization system for studying site-specific recombination events. , 2014, Journal of the American Chemical Society.

[35]  E. De Clercq,et al.  Human immunodeficiency virus glycoprotein gp120 as the primary target for the antiviral action of AR177 (Zintevir). , 1998, Molecular pharmacology.

[36]  Kunio Takeyasu,et al.  Direct analysis of Holliday junction resolving enzyme in a DNA origami nanostructure , 2014, Nucleic acids research.

[37]  Masayuki Endo,et al.  Single molecule visualization and characterization of Sox2-Pax6 complex formation on a regulatory DNA element using a DNA origami frame. , 2014, Nano letters.

[38]  Thomas Tørring,et al.  DNA origami: a quantum leap for self-assembly of complex structures. , 2011, Chemical Society reviews.

[39]  Hao Yan,et al.  Self-Assembled Water-Soluble Nucleic Acid Probe Tiles for Label-Free RNA Hybridization Assays , 2008, Science.

[40]  K. Gothelf,et al.  Electron-induced damage of biotin studied in the gas phase and in the condensed phase at a single-molecule level , 2013 .

[41]  E. Alizadeh,et al.  Precursors of solvated electrons in radiobiological physics and chemistry. , 2012, Chemical reviews.

[42]  Cech Life at the End of the Chromosome: Telomeres and Telomerase. , 2000, Angewandte Chemie.

[43]  Chunhai Fan,et al.  In situ monitoring of single molecule binding reactions with time-lapse atomic force microscopy on functionalized DNA origami. , 2011, Nanoscale.

[44]  W. B. Knowlton,et al.  Programmable Periodicity of Quantum Dot Arrays with DNA Origami Nanotubes , 2010, Nano letters.

[45]  F. Simmel,et al.  DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response , 2011, Nature.

[46]  Jean-Louis Mergny,et al.  G-quadruplex-binding ligand-induced DNA synapsis inside a DNA origami frame , 2014 .

[47]  Kurt V. Gothelf,et al.  Single molecule atomic force microscopy studies of photosensitized singlet oxygen behavior on a DNA origami template. , 2010, ACS nano.

[48]  Hao Yan,et al.  Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. , 2008, Nature nanotechnology.

[49]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[50]  Masayuki Endo,et al.  A versatile DNA nanochip for direct analysis of DNA base-excision repair. , 2010, Angewandte Chemie.

[51]  Yi Lu,et al.  Nano-encrypted Morse code: a versatile approach to programmable and reversible nanoscale assembly and disassembly. , 2013, Journal of the American Chemical Society.

[52]  Päivi Törmä,et al.  DNA origami as a nanoscale template for protein assembly , 2009, Nanotechnology.

[53]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[54]  J. R. Wagner,et al.  Low-energy electron-induced DNA damage: effect of base sequence in oligonucleotide trimers. , 2010, Journal of the American Chemical Society.

[55]  M. Komiyama,et al.  Stepwise and reversible nanopatterning of proteins on a DNA origami scaffold. , 2010, Chemical communications.

[56]  Kurt V. Gothelf,et al.  Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays , 2014, Scientific Reports.

[57]  Jonathon Howard,et al.  Detection of fractional steps in cargo movement by the collective operation of kinesin-1 motors , 2007, Proceedings of the National Academy of Sciences.

[58]  E. Illenberger,et al.  Electron-induced damage of DNA and its components: Experiments and theoretical models , 2011 .

[59]  Tim Liedl,et al.  Plasmonic DNA-origami nanoantennas for surface-enhanced Raman spectroscopy. , 2014, Nano letters.

[60]  Masayuki Endo,et al.  Direct and single-molecule visualization of the solution-state structures of G-hairpin and G-triplex intermediates. , 2014, Angewandte Chemie.

[61]  T. LaBean,et al.  Surface-enhanced Raman scattering plasmonic enhancement using DNA origami-based complex metallic nanostructures. , 2013, Nano letters.

[62]  S. Balasubramanian,et al.  Pyridostatin analogues promote telomere dysfunction and long-term growth inhibition in human cancer cells† †Electronic supplementary information (ESI) available: Experimental procedures and characterization of building blocks and pyridostatin analogues and FRET-melting profiles. See DOI: 10.1039/c2o , 2012, Organic & biomolecular chemistry.

[63]  M. Komiyama,et al.  Nanomechanical DNA origami 'single-molecule beacons' directly imaged by atomic force microscopy , 2011, Nature communications.

[64]  Paramjit S. Arora,et al.  Amyloid fibrils nucleated and organized by DNA origami constructions , 2014, Nature nanotechnology.

[65]  N. Seeman Nanomaterials based on DNA. , 2010, Annual review of biochemistry.