Thermal versus entanglement entropy: a measurement protocol for fermionic atoms with a quantum gas microscope

We show how to measure the order-two Renyi entropy of many-body states of spinful fermionic atoms in an optical lattice in equilibrium and non-equilibrium situations. The proposed scheme relies on the possibility to produce and couple two copies of the state under investigation, and to measure the occupation number in a site- and spin-resolved manner, e.g. with a quantum gas microscope. Such a protocol opens the possibility to measure entanglement and test a number of theoretical predictions, such as area laws and their corrections. As an illustration we discuss the interplay between thermal and entanglement entropy for a one dimensional Fermi–Hubbard model at finite temperature, and its possible measurement in an experiment using the present scheme.

[1]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[2]  P. Zoller,et al.  Noise- and disorder-resilient optical lattices , 2012, 1205.6189.

[3]  P. Zoller,et al.  Measuring entanglement growth in quench dynamics of bosons in an optical lattice. , 2012, Physical review letters.

[4]  Maciej Lewenstein,et al.  Ultracold Atoms in Optical Lattices: Simulating quantum many-body systems , 2012 .

[5]  E. Demler,et al.  Measuring entanglement entropy of a generic many-body system with a quantum switch. , 2012, Physical review letters.

[6]  J. Dalibard,et al.  Quantum simulations with ultracold quantum gases , 2012, Nature Physics.

[7]  S. Tung,et al.  Observation of Quantum Criticality with Ultracold Atoms in Optical Lattices , 2012, Science.

[8]  M. Hastings,et al.  Entanglement scaling in two-dimensional gapless systems , 2011, 1112.4474.

[9]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[10]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[11]  Matthew B. Hastings,et al.  Anomalies in the entanglement properties of the square-lattice Heisenberg model , 2011, 1107.2840.

[12]  Igor Aharonovich,et al.  Diamond-based single-photon emitters , 2011 .

[13]  M. Greiner,et al.  Quantum simulation of antiferromagnetic spin chains in an optical lattice , 2011, Nature.

[14]  P. Calabrese,et al.  Universal parity effects in the entanglement entropy of XX chains with open boundary conditions , 2010, 1010.5796.

[15]  Immanuel Bloch,et al.  Single-atom-resolved fluorescence imaging of an atomic Mott insulator , 2010, Nature.

[16]  P. Calabrese,et al.  Universal corrections to scaling for block entanglement in spin-1/2 XX chains , 2010, 1006.3420.

[17]  Matthew B Hastings,et al.  Measuring Renyi entanglement entropy in quantum Monte Carlo simulations. , 2010, Physical review letters.

[18]  A. Georges,et al.  Quantitative determination of temperature in the approach to magnetic order of ultracold fermions in an optical lattice. , 2009, Physical review letters.

[19]  P. Calabrese,et al.  Parity effects in the scaling of block entanglement in gapless spin chains. , 2009, Physical review letters.

[20]  C. Salomon,et al.  Exploring the thermodynamics of a universal Fermi gas , 2009, Nature.

[21]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[22]  Markus Greiner,et al.  A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice , 2009, Nature.

[23]  J. Cardy,et al.  Entanglement entropy and conformal field theory , 2009, 0905.4013.

[24]  S. J. van Enk,et al.  Direct measurements of entanglement and permutation symmetry , 2009 .

[25]  C. Fuertes,et al.  Entanglement Entropy in the O(N) Model , 2009, 0904.4477.

[26]  G. Evenbly,et al.  Simulation of two-dimensional quantum systems using a tree tensor network that exploits the entropic area law , 2009, 0903.5017.

[27]  S. Wessel,et al.  Time evolution of correlations in strongly interacting fermions after a quantum quench , 2008, 0812.0561.

[28]  Sebastian Will,et al.  Metallic and Insulating Phases of Repulsively Interacting Fermions in a 3D Optical Lattice , 2008, Science.

[29]  A. Laeuchli,et al.  Spreading of correlations and entanglement after a quench in the one-dimensional Bose–Hubbard model , 2008, 0803.2947.

[30]  M. Rigol,et al.  Thermalization and its mechanism for generic isolated quantum systems , 2007, Nature.

[31]  Norbert Schuch,et al.  Entropy scaling and simulability by matrix product states. , 2007, Physical review letters.

[32]  Matthew B Hastings,et al.  Area laws in quantum systems: mutual information and correlations. , 2007, Physical review letters.

[33]  J. Dalibard,et al.  Many-Body Physics with Ultracold Gases , 2007, 0704.3011.

[34]  V. Vedral,et al.  Entanglement in many-body systems , 2007, quant-ph/0703044.

[35]  T. Müller,et al.  Direct observation of second-order atom tunnelling , 2007, Nature.

[36]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[37]  A. Buchleitner,et al.  Observable entanglement measure for mixed quantum States. , 2006, Physical review letters.

[38]  E. Fradkin,et al.  Entanglement entropy of 2D conformal quantum critical points: hearing the shape of a quantum drum. , 2006, Physical review letters.

[39]  D. Weiss,et al.  A quantum Newton's cradle , 2006, Nature.

[40]  Xiao-Gang Wen,et al.  Detecting topological order in a ground state wave function. , 2005, Physical review letters.

[41]  J. Preskill,et al.  Topological entanglement entropy. , 2005, Physical review letters.

[42]  J. Cardy,et al.  Evolution of entanglement entropy in one-dimensional systems , 2005, cond-mat/0503393.

[43]  P. Zoller,et al.  The cold atom Hubbard toolbox , 2004, cond-mat/0410614.

[44]  M. Troyer,et al.  Generalized directed loop method for quantum Monte Carlo simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  J. Cardy,et al.  Entanglement entropy and quantum field theory , 2004, hep-th/0405152.

[46]  M. Hellwig,et al.  Tuning the scattering length with an optically induced Feshbach resonance. , 2004, Physical review letters.

[47]  F. Verstraete,et al.  Quantum entanglement theory in the presence of superselection rules (15 pages) , 2004, quant-ph/0404079.

[48]  Thierry Giamarchi,et al.  Quantum physics in one dimension , 2004 .

[49]  M. Horodecki,et al.  Direct estimations of linear and nonlinear functionals of a quantum state. , 2001, Physical review letters.

[50]  A. Sandvik,et al.  Quantum Monte Carlo with directed loops. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  P. Julienne,et al.  Effective-Scattering-Length Model of Ultracold Atomic Collisions and Feshbach Resonances in Tight Harmonic Traps , 2002, physics/0201021.

[52]  A. Sandvik Stochastic series expansion method with operator-loop update , 1999, cond-mat/9902226.

[53]  Vladimir E. Korepin,et al.  The One-Dimensional Hubbard Model , 1994 .

[54]  M. Srednicki,et al.  Entropy and area. , 1993, Physical review letters.

[55]  Elliott H. Lieb,et al.  Absence of Mott Transition in an Exact Solution of the Short-Range, One-Band Model in One Dimension , 1968 .