Hybrid FETD–FDTD Technique

This chapter contains sections titled: FDTD Method PML Implementation in FDTD Near-to-Far-Field Transformation in FDTD Alternative FETD Formulation Equivalence Between FETD and FDTD Stable FETD-FDTD Interface Building Hybrid Meshes Wave-Equation Stabilization Validation Examples Summary References ]]>

[1]  V. Shankar,et al.  A Time-Domain, Finite-Volume Treatment for the Maxwell Equations , 1990 .

[2]  R. Lee A note on mass lumping in the finite element time domain method , 2006, IEEE Transactions on Antennas and Propagation.

[3]  Richard Holland,et al.  THREDS: A Finite-Difference Time-Domain EMP Code in 3d Spherical Coordinates , 1983, IEEE Transactions on Nuclear Science.

[4]  T. Martin,et al.  An improved near- to far-zone transformation for the finite-difference time-domain method , 1998 .

[5]  D. Katz,et al.  Validation and extension to three dimensions of the Berenger PML absorbing boundary condition for FD-TD meshes , 1994, IEEE Microwave and Guided Wave Letters.

[6]  T. Itoh,et al.  Hybridizing FD-TD analysis with unconditionally stable FEM for objects of curved boundary , 1995, Proceedings of 1995 IEEE MTT-S International Microwave Symposium.

[7]  W. A. Artuzi,et al.  Improving the Newmark time integration scheme in finite element time domain methods , 2005, IEEE Microwave and Wireless Components Letters.

[8]  D. Zutter,et al.  Modeling of discontinuities in general coaxial waveguide structures by the FDTD-method , 1992 .

[9]  P. Monk,et al.  Gauss Point Mass Lumping Schemes for Maxwell's Equations , 1998 .

[10]  D. J. Riley,et al.  VOLMAX: a solid-model-based, transient volumetric Maxwell solver using hybrid grids , 1997 .

[11]  Richard W. Ziolkowski,et al.  A Three-Dimensional Modified Finite Volume Technique for Maxwell's Equations , 1990 .

[12]  R. Luebbers,et al.  A finite-difference time-domain near zone to far zone transformation (electromagnetic scattering) , 1991 .

[13]  A. Taflove,et al.  Numerical Solution of Steady-State Electromagnetic Scattering Problems Using the Time-Dependent Maxwell's Equations , 1975 .

[14]  Rolf Schuhmann,et al.  The Perfect Boundary Approximation Technique Facing the Big Challenge of High Precision Field Computation , 1998 .

[15]  E. H. Newman,et al.  Radiation and scattering from loaded microstrip antennas over a wide bandwidth , 1988 .

[16]  Jin-Fa Lee,et al.  Suppressing linear time growth in edge element based finite element time domain solution using divergence free constraint equation , 2005, 2005 IEEE Antennas and Propagation Society International Symposium.

[17]  D. J. Riley,et al.  Interfacing unstructured tetrahedron grids to structured-grid FDTD , 1995 .

[18]  N. Madsen Divergence preserving discrete surface integral methods for Maxwell's curl equations using non-orthogonal unstructured grids , 1995 .

[19]  Thomas Rylander,et al.  Stable FEM-FDTD hybrid method for Maxwell's equations , 2000 .

[20]  Ruey-Beei Wu,et al.  Hybrid finite-difference time-domain modeling of curved surfaces using tetrahedral edge elements , 1997 .

[21]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[22]  O. Picon,et al.  A finite element method based on Whitney forms to solve Maxwell equations in the time domain , 1995 .

[23]  Stephen D. Gedney,et al.  An Anisotropic PML Absorbing Media for the FDTD Simulation of Fields in Lossy and Dispersive Media , 1996 .

[24]  T. Belytschko,et al.  Stability of explicit‐implicit mesh partitions in time integration , 1978 .

[25]  K. S. Yee,et al.  Conformal finite-different time-domain (FDTD) with overlapping grids , 1992 .

[26]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[27]  J. S. Chen,et al.  Conformal hybrid finite difference time domain and finite volume time domain , 1994 .

[28]  Jin-Fa Lee,et al.  Whitney elements time domain (WETD) methods , 1995 .

[29]  R. Mittra,et al.  A locally conformal finite-difference time-domain (FDTD) algorithm for modeling three-dimensional perfectly conducting objects , 1997 .

[30]  Stephen D. Gedney,et al.  Convolution PML (CPML): An efficient FDTD implementation of the CFS–PML for arbitrary media , 2000 .

[31]  D. J. Riley,et al.  Analysis of airframe-mounted antennas using parallel and hybridized finite-element time-domain methods , 2002, IEEE Antennas and Propagation Society International Symposium (IEEE Cat. No.02CH37313).

[32]  M. Feliziani,et al.  Mixed finite-difference/Whitney-elements time domain (FD/WE-TD) method , 1998 .

[33]  J. S. Shang,et al.  Characteristic-based algorithms for solving the Maxwell equations in the time domain , 1995 .

[34]  Thomas Rylander,et al.  Stability of Explicit-Implicit Hybrid Time-Stepping Schemes for Maxwell's Equations , 2002 .

[35]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[36]  Robert Lee,et al.  The discrete origin of FETD-Newmark late time instability, and a correction scheme , 2007, J. Comput. Phys..