Incremental stability properties for discrete-time systems

Incremental stability describes the asymptotic behavior between any two trajectories of a dynamical system. Such properties are of interest, for example, in the study of observers or synchronization of chaotic systems. In this paper, we develop the notions of incremental stability and incremental input-to-state stability (ISS) for discrete-time systems. We derive Lyapunov function characterizations for these properties as well as a useful summation-to-summation formulation of the incremental stability property.

[1]  Andrew R. Teel,et al.  On the Robustness of KL-stability for Difference Inclusions: Smooth Discrete-Time Lyapunov Functions , 2005, SIAM J. Control. Optim..

[2]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems , 2006 .

[3]  Eduardo Sontag Comments on integral variants of ISS , 1998 .

[4]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[5]  Nathan van de Wouw,et al.  Convergent systems vs. incremental stability , 2013, Syst. Control. Lett..

[6]  A. Teel,et al.  A Smooth Lyapunov Function from a Class-kl Estimate Involving Two Positive Semideenite Functions , 1999 .

[7]  Christopher M. Kellett,et al.  A compendium of comparison function results , 2014, Math. Control. Signals Syst..

[8]  Paulo Tabuada,et al.  Backstepping Design for Incremental Stability , 2010, IEEE Transactions on Automatic Control.

[9]  吉沢 太郎 Stability theory by Liapunov's second method , 1966 .

[10]  Zhong-Ping Jiang,et al.  A converse Lyapunov theorem for discrete-time systems with disturbances , 2002, Syst. Control. Lett..

[11]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..

[12]  Eduardo Sontag Smooth stabilization implies coprime factorization , 1989, IEEE Transactions on Automatic Control.

[13]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[14]  A. Teel,et al.  A smooth Lyapunov function from a class- ${\mathcal{KL}}$ estimate involving two positive semidefinite functions , 2000 .

[15]  Andrew R. Teel,et al.  Sufficient conditions for robustness of $$\mathcal{K}\mathcal{L}$$ -stability for difference inclusions , 2007, Math. Control. Signals Syst..

[16]  Eduardo Sontag,et al.  Input-to-state stability for discrete-time nonlinear systems , 1999, at - Automatisierungstechnik.

[17]  A. Movchan Stability of processes with respect to two metrics , 1960 .

[18]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Nonlinear Systems Analyzing stability differentially leads to a new perspective on nonlinear dynamic systems , 1999 .

[19]  Eduardo Sontag Input to State Stability: Basic Concepts and Results , 2008 .

[20]  Peter M. Dower,et al.  Input-to-state stability with respect to two measurement functions: Discrete-time systems , 2015, 2015 54th IEEE Conference on Decision and Control (CDC).