Detection of Bivalve Beds on Exposed Intertidal Flats Using Polarimetric SAR Indicators

We propose new indicators for bivalve (oyster and mussel) beds on exposed intertidal flats, derived from dual-copolarization (HH + VV) TerraSAR-X, Radarsat-2, and ALOS-2 images of the German North Sea coast. Our analyses are based upon the Kennaugh element framework, and we show that different targets on exposed intertidal flats exhibit different radar backscattering characteristics, which manifest in different magnitudes of the Kennaugh elements. Namely, the inter-channel correlation’s real (K3) and imaginary (K7) part can be used to distinguish bivalve beds from surrounding sandy sediments, and together with the polarimetric coefficient (i.e., the normalized differential polarization ratio, K0/K4) they can be used as indicators for bivalve beds using multi-frequency dual-copolarization SAR data. Our results show that continuous bivalve bed monitoring is possible using dual-copolarimetric SAR acquisitions at all radar wavelengths.

[1]  Martin Gade,et al.  Joint use of multiple Synthetic Aperture Radar imagery for the detection of bivalve beds and morphological changes on intertidal flats , 2016 .

[2]  Martin Gade,et al.  A Fully Polarimetric SAR Imagery Classification Scheme for Mud and Sand Flats in Intertidal Zones , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Andreas Schmitt,et al.  Monitoring of the Lac Bam Wetland Extent Using Dual-Polarized X-Band SAR Data , 2016, Remote. Sens..

[4]  Xiaofeng Li,et al.  Deep‐water seamount wakes on SEASAT SAR image in the Gulf Stream region , 2012 .

[5]  Martin Gade,et al.  ANALYSES OF MULTI-YEAR SYNTHETIC APERTURE RADAR IMAGERY OF DRY-FALLEN INTERTIDAL FLATS , 2015 .

[6]  Yoshio Yamaguchi,et al.  Polarimetric Features of Oyster Farm Observed by AIRSAR and JERS-1 , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[7]  V. Klemas,et al.  Remote sensing of emergent and submerged wetlands: an overview , 2013 .

[8]  Aurélie DEHOUCK,et al.  POTENTIAL OF TERRASAR-X IMAGERY FOR MAPPING INTERTI DAL COASTAL WETLANDS , 2011 .

[9]  Raymond E. Grizzle,et al.  Historical changes in intertidal oyster (Crassostrea virginica) reefs in a Florida Lagoon potentially related to boating activities. , 2002 .

[10]  Alexis J. Comber,et al.  Random forest classification of salt marsh vegetation habitats using quad-polarimetric airborne SAR, elevation and optical RS data , 2014 .

[11]  Martin Gade,et al.  Remotely sensing the German Wadden Sea—a new approach to address national and international environmental legislation , 2016, Environmental Monitoring and Assessment.

[12]  Martin Gade,et al.  Classification of sediments on exposed tidal flats in the German Bight using multi-frequency radar data , 2008 .

[13]  Duk-jin Kim,et al.  Estimation of Surface Roughness Parameter in Intertidal Mudflat Using Airborne Polarimetric SAR Data , 2009, IEEE Transactions on Geoscience and Remote Sensing.

[14]  Peter M. J. Herman,et al.  Characterisation of surface roughness and sediment texture of intertidal flats using ERS SAR imagery , 2005 .

[15]  Thomas Jagdhuber,et al.  Two Component Decomposition of Dual Polarimetric HH/VV SAR Data: Case Study for the Tundra Environment of the Mackenzie Delta Region, Canada , 2016, Remote. Sens..

[16]  Peter M. J. Herman,et al.  Regression-based synergy of optical, shortwave infrared and microwave remote sensing for monitoring the grain-size of intertidal sediments , 2007 .

[17]  Stefan Hinz,et al.  The Kennaugh element framework for multi-scale, multi-polarized, multi-temporal and multi-frequency SAR image preparation , 2015 .

[18]  Martin Gade A polarimetric radar view at exposed intertidal flats , 2016, 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[19]  Martin Gade,et al.  Multi-frequency SAR data help improving the monitoring of intertidal flats on the German North Sea coast , 2014 .

[20]  Martin Gade,et al.  On the imaging of exposed intertidal flats by single- and dual-co-polarization Synthetic Aperture Radar , 2018 .

[21]  Xiaofeng Li,et al.  Atmospheric frontal gravity waves observed in satellite SAR images of the Bohai Sea and Huanghai Sea , 2010 .

[22]  Karin Troost,et al.  Causes and effects of a highly successful marine invasion: Case-study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries , 2010 .

[23]  Duk-jin Kim,et al.  Oyster reef signature in tidal flats detected by multi-frequency polarimetric SAR data , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Wooil M. Moon,et al.  Detection of oyster habitat in tidal flats using multi-frequency polarimetric SAR data , 2012 .

[25]  C. Loumagne,et al.  Analysis of TerraSAR-X data and their sensitivity to soil surface parameters over bare agricultural fields , 2008 .

[26]  Andreas Schmitt,et al.  Water extent monitoring and water level estimation using multi-frequency, multi-polarized, and multi-temporal SAR data , 2014, 2014 IEEE Geoscience and Remote Sensing Symposium.

[27]  Joong-Sun Won,et al.  Potential uses of TerraSAR-X for mapping herbaceous halophytes over salt marsh and tidal flats , 2012 .

[28]  Christian Germain,et al.  Classification of oyster habitats by combining wavelet-based texture features and polarimetric SAR descriptors , 2015, 2015 IEEE International Geoscience and Remote Sensing Symposium (IGARSS).

[29]  Yoshio Yamaguchi,et al.  Sandbank and Oyster Farm Monitoring with Multi-Temporal Polarimetric SAR Data Using Four-Component Scattering Power Decomposition , 2013, IEICE Trans. Commun..