Magnetic particle imaging: kinetics of the intravascular signal in vivo

The highest spectral MPI signal was measured directly after Resovist<sup>®</sup> administration (3,21*10<sup>-9</sup> Am2Hz<sup>-1</sup>). After application of Resovist<sup>®</sup> the signal decreased to 39.7 % within 5 minutes and to 20.5 % and 12.1 % within 10 and 15 minutes, respectively (see Fig. 1). Within 30 minutes, the measured signal was below the background noise level.

[1]  D. Eberbeck,et al.  Optimization of Magnetic Nanoparticles for Magnetic Particle Imaging , 2012, IEEE Transactions on Magnetics.

[2]  Emine Ulku Saritas,et al.  X‐Space MPI: Magnetic Nanoparticles for Safe Medical Imaging , 2012, Advanced materials.

[3]  Rebekah Drezek,et al.  In vivo biodistribution of nanoparticles. , 2011, Nanomedicine.

[4]  Kevin R Minard,et al.  Optimization of nanoparticle core size for magnetic particle imaging. , 2009, Journal of magnetism and magnetic materials.

[5]  Lutz Trahms,et al.  How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .

[6]  P. Reimer,et al.  Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications , 2003, European Radiology.

[7]  Bernhard Gleich,et al.  Fundamentals and applications of magnetic particle imaging. , 2012, Journal of cardiovascular computed tomography.

[8]  Jörg Barkhausen,et al.  Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers , 2013, Biomedizinische Technik. Biomedical engineering.

[9]  Kannan M. Krishnan,et al.  Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. , 2013, Biomaterials.

[10]  M. Taupitz,et al.  A NEW SUPERPARAMAGNETIC IRON OXIDE CONTRAST AGENT FOR MAGNETIC RESONANCE IMAGING , 1994 .

[11]  M. Taupitz,et al.  Contrast‐enhanced MR imaging of liver and spleen: First experience in humans with a new superparamagnetic iron oxide , 1994, Journal of magnetic resonance imaging : JMRI.

[12]  E. Tombácz,et al.  Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications , 2013, International journal of molecular sciences.

[13]  B Gleich,et al.  Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection , 2013, Physics in medicine and biology.

[14]  John B Weaver,et al.  Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field. , 2008, Medical physics.

[15]  N. Nitta,et al.  Histological study of the biodynamics of iron oxide nanoparticles with different diameters , 2011, International journal of nanomedicine.

[16]  Kannan M Krishnan,et al.  Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.

[17]  Jean-Luc Coll,et al.  Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. , 2012, Advanced drug delivery reviews.

[18]  Bernhard Gleich,et al.  Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.

[19]  A. Kopp,et al.  [Current status of the clinical development of MR contrast media]. , 1997, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[20]  Thorsten M. Buzug,et al.  Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging , 2009 .

[21]  Bernhard Gleich,et al.  Magnetic Particle imaging : Visualization of Instruments for Cardiovascular Intervention 1 , 2012 .

[22]  Kevin R Minard,et al.  Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. , 2011, Medical physics.

[23]  H. Gu,et al.  Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging , 2009 .