Magnetic particle imaging: kinetics of the intravascular signal in vivo
暂无分享,去创建一个
Matthias Graeser | Thorsten M Buzug | Robert L Duschka | Florian M Vogt | Julian Haegele | Kerstin Lüdtke-Buzug | T. Buzug | F. Vogt | N. Panagiotopoulos | M. Graeser | Nikolaos Panagiotopoulos | Jörg Barkhausen | R. Duschka | J. Haegele | K. Lüdtke-Buzug | Catharina Schaecke | J. Barkhausen | C. Schaecke
[1] D. Eberbeck,et al. Optimization of Magnetic Nanoparticles for Magnetic Particle Imaging , 2012, IEEE Transactions on Magnetics.
[2] Emine Ulku Saritas,et al. X‐Space MPI: Magnetic Nanoparticles for Safe Medical Imaging , 2012, Advanced materials.
[3] Rebekah Drezek,et al. In vivo biodistribution of nanoparticles. , 2011, Nanomedicine.
[4] Kevin R Minard,et al. Optimization of nanoparticle core size for magnetic particle imaging. , 2009, Journal of magnetism and magnetic materials.
[5] Lutz Trahms,et al. How the size distribution of magnetic nanoparticles determines their magnetic particle imaging performance , 2011 .
[6] P. Reimer,et al. Ferucarbotran (Resovist): a new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: properties, clinical development, and applications , 2003, European Radiology.
[7] Bernhard Gleich,et al. Fundamentals and applications of magnetic particle imaging. , 2012, Journal of cardiovascular computed tomography.
[8] Jörg Barkhausen,et al. Comparison of commercial iron oxide-based MRI contrast agents with synthesized high-performance MPI tracers , 2013, Biomedizinische Technik. Biomedical engineering.
[9] Kannan M. Krishnan,et al. Monodisperse magnetite nanoparticle tracers for in vivo magnetic particle imaging. , 2013, Biomaterials.
[10] M. Taupitz,et al. A NEW SUPERPARAMAGNETIC IRON OXIDE CONTRAST AGENT FOR MAGNETIC RESONANCE IMAGING , 1994 .
[11] M. Taupitz,et al. Contrast‐enhanced MR imaging of liver and spleen: First experience in humans with a new superparamagnetic iron oxide , 1994, Journal of magnetic resonance imaging : JMRI.
[12] E. Tombácz,et al. Chemical and Colloidal Stability of Carboxylated Core-Shell Magnetite Nanoparticles Designed for Biomedical Applications , 2013, International journal of molecular sciences.
[13] B Gleich,et al. Nanoparticle encapsulation in red blood cells enables blood-pool magnetic particle imaging hours after injection , 2013, Physics in medicine and biology.
[14] John B Weaver,et al. Frequency distribution of the nanoparticle magnetization in the presence of a static as well as a harmonic magnetic field. , 2008, Medical physics.
[15] N. Nitta,et al. Histological study of the biodynamics of iron oxide nanoparticles with different diameters , 2011, International journal of nanomedicine.
[16] Kannan M Krishnan,et al. Tracer design for magnetic particle imaging (invited). , 2012, Journal of applied physics.
[17] Jean-Luc Coll,et al. Physico-chemical parameters that govern nanoparticles fate also dictate rules for their molecular evolution. , 2012, Advanced drug delivery reviews.
[18] Bernhard Gleich,et al. Tomographic imaging using the nonlinear response of magnetic particles , 2005, Nature.
[19] A. Kopp,et al. [Current status of the clinical development of MR contrast media]. , 1997, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.
[20] Thorsten M. Buzug,et al. Magnetization response spectroscopy of superparamagnetic nanoparticles for magnetic particle imaging , 2009 .
[21] Bernhard Gleich,et al. Magnetic Particle imaging : Visualization of Instruments for Cardiovascular Intervention 1 , 2012 .
[22] Kevin R Minard,et al. Optimizing magnetite nanoparticles for mass sensitivity in magnetic particle imaging. , 2011, Medical physics.
[23] H. Gu,et al. Size analysis of carboxydextran coated superparamagnetic iron oxide particles used as contrast agents of magnetic resonance imaging , 2009 .