Decentralized stability-enhancing control of synchronous generator

This paper describes new structures for stability-enhancing excitation controllers designed using a nonlinear multi-machine system model and Lyapunov's direct method. Two control structures are presented: a hierarchical structure In which the AVR is the master controller and the PSS the slave controller and a traditional structure in which the PSS constitutes a supplementary loop to the main AVR. Both controllers are shown to be robust, as the damping they introduce into the system is insensitive to changes in both the system topology/parameters and the pattern of network flows. Each individual controller contributes positively to the overall system damping with no undesirable interaction between controllers. These features should allow a decentralized approach to the design of the AVR+PSS. Such a design approach is compatible with the new competitive market structures and should result in savings on commissioning costs. Simulation results for a multi-machine power system are presented that confirm the above and show that the two control structures are very effective in damping both local and inter-area power swings.