Optimal Scaling and Diffusion Limits for the Langevin Algorithm in High Dimensions
暂无分享,去创建一个
[1] N. Metropolis,et al. Equation of State Calculations by Fast Computing Machines , 1953, Resonance.
[2] E. Berger. Asymptotic behaviour of a class of stochastic approximation procedures , 1986 .
[3] R. Durrett. Stochastic Calculus: A Practical Introduction , 1996 .
[4] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[5] J. Rosenthal,et al. Optimal scaling of discrete approximations to Langevin diffusions , 1998 .
[6] Hoon Kim,et al. Monte Carlo Statistical Methods , 2000, Technometrics.
[7] Gareth O. Roberts,et al. From metropolis to diffusions: Gibbs states and optimal scaling , 2000 .
[8] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .
[9] Sergio Scarlatti,et al. Optimal scaling of MaLa for nonlinear regression , 2004 .
[10] J. Rosenthal,et al. Scaling limits for the transient phase of local Metropolis–Hastings algorithms , 2005 .
[11] Christian P. Robert,et al. Monte Carlo Statistical Methods (Springer Texts in Statistics) , 2005 .
[12] J. Voss,et al. Analysis of SPDEs arising in path sampling. Part I: The Gaussian case , 2005 .
[13] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[14] T. Kurtz,et al. Stochastic equations in infinite dimensions , 2006 .
[15] A. Stuart,et al. ANALYSIS OF SPDES ARISING IN PATH SAMPLING PART II: THE NONLINEAR CASE , 2006, math/0601092.
[16] M. B'edard. Weak convergence of Metropolis algorithms for non-i.i.d. target distributions , 2007, 0710.3684.
[17] G. Roberts,et al. An MCMC method for diffusion bridges , 2008 .
[18] G. Roberts,et al. MCMC methods for diffusion bridges , 2008 .
[19] Jonathan C. Mattingly,et al. SPDE limits of the random walk Metropolis algorithm in high dimensions , 2009 .
[20] Matti Lassas. Eero Saksman,et al. Discretization-invariant Bayesian inversion and Besov space priors , 2009, 0901.4220.
[21] A. Stuart,et al. MCMC methods for sampling function space , 2009 .
[22] Gareth Roberts,et al. Optimal scalings for local Metropolis--Hastings chains on nonproduct targets in high dimensions , 2009, 0908.0865.
[23] J. M. Sanz-Serna,et al. Optimal tuning of the hybrid Monte Carlo algorithm , 2010, 1001.4460.
[24] Andrew M. Stuart,et al. Inverse problems: A Bayesian perspective , 2010, Acta Numerica.
[25] P. Fearnhead,et al. The Random Walk Metropolis: Linking Theory and Practice Through a Case Study , 2010, 1011.6217.
[26] A. Stuart,et al. Besov priors for Bayesian inverse problems , 2011, 1105.0889.
[27] J. M. Sanz-Serna,et al. Hybrid Monte Carlo on Hilbert spaces , 2011 .
[28] A. Stuart,et al. Signal processing problems on function space: Bayesian formulation, stochastic PDEs and effective MCMC methods , 2011 .
[29] A. M. Stuart,et al. Sparse deterministic approximation of Bayesian inverse problems , 2011, 1103.4522.
[30] Jonathan C. Mattingly,et al. Diffusion limits of the random walk metropolis algorithm in high dimensions , 2010, 1003.4306.