Most probable transition paths in piecewise-smooth stochastic differential equations

We develop a path integral framework for determining most probable paths in a class of systems of stochastic differential equations with piecewise-smooth drift and additive noise. This approach extends the Freidlin-Wentzell theory of large deviations to cases where the system is piecewisesmooth and may be non-autonomous. In particular, we consider an n−dimensional system with a switching manifold in the drift that forms an (n− 1)−dimensional hyperplane and investigate noise-induced transitions between metastable states on either side of the switching manifold. To do this, we mollify the drift and use Γ−convergence to derive an appropriate rate functional for the system in the piecewise-smooth limit. The resulting functional consists of the standard Freidlin-Wentzell rate functional, with an additional contribution due to times when the most probable path slides in a crossing region of the switching manifold. We explore implications of the derived functional through two case studies, which exhibit notable phenomena such as non-unique most probable paths and noise-induced sliding in a crossing region.

[1]  Eoghan J. Staunton,et al.  Estimating the dynamics of systems with noisy boundaries , 2020 .

[2]  D. Rothman,et al.  Routes to global glaciation , 2020, Proceedings of the Royal Society A.

[3]  Lawrence C. Evans,et al.  Weak convergence methods for nonlinear partial differential equations , 1990 .

[4]  Ulrike Feudel,et al.  Minimal fatal shocks in multistable complex networks , 2020, Scientific Reports.

[5]  T. Lenton Early warning of climate tipping points , 2011 .

[6]  S. Brendle,et al.  Calculus of Variations , 1927, Nature.

[7]  Large-deviation properties of Brownian motion with dry friction. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[8]  Eric Vanden-Eijnden,et al.  Noise-induced mixed-mode oscillations in a relaxation oscillator near the onset of a limit cycle. , 2008, Chaos.

[9]  N. Berglund Kramers' law: Validity, derivations and generalisations , 2011, 1106.5799.

[10]  Peter Cox,et al.  Tipping points in open systems: bifurcation, noise-induced and rate-dependent examples in the climate system , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[11]  Eoghan J. Staunton,et al.  Discontinuity mappings for stochastic nonsmooth systems , 2020 .

[12]  Andrew M. Stuart,et al.  Gaussian Approximations for Transition Paths in Brownian Dynamics , 2017, SIAM J. Math. Anal..

[13]  Ira B. Schwartz,et al.  An iterative action minimizing method for computing optimal paths in stochastic dynamical systems , 2012, 1210.5153.

[14]  Yuri A. Kuznetsov,et al.  One-Parameter bifurcations in Planar Filippov Systems , 2003, Int. J. Bifurc. Chaos.

[15]  Ian Eisenman,et al.  Factors controlling the bifurcation structure of sea ice retreat , 2012 .

[16]  Mike R. Jeffrey,et al.  Hidden dynamics in models of discontinuity and switching , 2014 .

[17]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[18]  D. Rothman Characteristic disruptions of an excitable carbon cycle , 2019, Proceedings of the National Academy of Sciences.

[19]  Robert S. Maier,et al.  Limiting Exit Location Distributions in the Stochastic Exit Problem , 1994, SIAM J. Appl. Math..

[20]  I. Eisenmana,et al.  Nonlinear threshold behavior during the loss of Arctic sea ice , 2008 .

[21]  D. Novaes,et al.  Regularization of hidden dynamics in piecewise smooth flows , 2014, 1412.2099.

[22]  P. Cox,et al.  Excitability in ramped systems: the compost-bomb instability , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[23]  I. Schwartz,et al.  Maximal Sensitive Dependence and the Optimal Path to Epidemic Extinction , 2010, Bulletin of mathematical biology.

[24]  Eric Vanden-Eijnden,et al.  Transition-path theory and path-finding algorithms for the study of rare events. , 2010, Annual review of physical chemistry.

[25]  W. Moon,et al.  A Stochastic Dynamical Model of Arctic Sea Ice , 2015, 1510.00355.

[26]  Sebastian Wieczorek,et al.  Phase tipping: how cyclic ecosystems respond to contemporary climate , 2021, Proceedings of the Royal Society A.

[27]  Detlef Dürr,et al.  The Onsager-Machlup function as Lagrangian for the most probable path of a diffusion process , 1978 .

[28]  Eric Forgoston,et al.  Seasonal forcing in stochastic epidemiology models , 2018 .

[29]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[30]  I. Gyöngy,et al.  Existence of strong solutions for Itô's stochastic equations via approximations , 1996 .

[31]  A. Baule,et al.  A path integral approach to random motion with nonlinear friction , 2009, 0910.4663.

[32]  William L. Kath,et al.  An Iterative Stochastic Method for Simulating Large Deviations and Rare Events , 2011, SIAM J. Appl. Math..

[33]  Tiejun Li,et al.  Gamma-Limit of the Onsager-Machlup Functional on the Space of Curves , 2021, SIAM J. Math. Anal..

[34]  Eric Forgoston,et al.  A Primer on Noise-Induced Transitions in Applied Dynamical Systems , 2017, SIAM Rev..

[35]  Jürgen Kurths,et al.  Metastability for discontinuous dynamical systems under Lévy noise: Case study on Amazonian Vegetation , 2017, Scientific Reports.

[36]  G. Burton Sobolev Spaces , 2013 .

[37]  Gianni Dal Maso,et al.  An Introduction to [gamma]-convergence , 1993 .

[38]  E Weinan,et al.  Minimum action method for the study of rare events , 2004 .

[39]  M. Freidlin,et al.  Random Perturbations of Dynamical Systems , 1984 .

[40]  Marten Scheffer,et al.  Pulse-Driven Loss of Top-Down Control: The Critical-Rate Hypothesis , 2008, Ecosystems.

[41]  Rachel Kuske,et al.  The influence of localized randomness on regular grazing bifurcations with applications to impacting dynamics , 2015, 1502.02724.

[42]  Dorian S. Abbot,et al.  Analysis of an Arctic Sea Ice Loss Model in the Limit of a Discontinuous Albedo , 2015, SIAM J. Appl. Dyn. Syst..

[43]  Jonathan Weare,et al.  Path Properties of Atmospheric Transitions: Illustration with a Low-Order Sudden Stratospheric Warming Model , 2020, Journal of the Atmospheric Sciences.

[44]  E. Vanden-Eijnden,et al.  The geometric minimum action method: A least action principle on the space of curves , 2008 .

[45]  Jan Sieber,et al.  Climate tipping as a noisy bifurcation: a predictive technique , 2010, 1007.1376.

[46]  P. Ditlevsen,et al.  Risk of tipping the overturning circulation due to increasing rates of ice melt , 2021, Proceedings of the National Academy of Sciences.

[47]  H. Touchette,et al.  Stick–slip motion of solids with dry friction subject to random vibrations and an external field , 2010, 1008.3531.

[48]  H. Touchette,et al.  Weak-noise limit of a piecewise-smooth stochastic differential equation. , 2013, Physical review. E, Statistical, nonlinear, and soft matter physics.

[49]  Andrea Braides Gamma-Convergence for Beginners , 2002 .

[50]  Adam H. Monahan,et al.  Stabilization of Climate Regimes by Noise in a Simple Model of the Thermohaline Circulation , 2002 .

[51]  K. Aihara,et al.  Bifurcations and strange nonchaotic attractors in a phase oscillator model of glacial–interglacial cycles , 2015, 1506.04628.

[52]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[53]  Andreas Neuenkirch,et al.  An Adaptive Euler-Maruyama Scheme for Stochastic Differential Equations with Discontinuous Drift and its Convergence Analysis , 2018, SIAM J. Numer. Anal..

[54]  Sebastian Wieczorek,et al.  Tipping Phenomena and Points of No Return in Ecosystems: Beyond Classical Bifurcations , 2019, SIAM J. Appl. Dyn. Syst..

[55]  Mason A. Porter,et al.  Prey Switching with a Linear Preference Trade-Off , 2013, SIAM J. Appl. Dyn. Syst..

[56]  Barbara Gentz,et al.  Metastability in simple climate models: Pathwise analysis of slowly driven Langevin equations , 2002 .

[57]  E. Vanden-Eijnden,et al.  String method for the study of rare events , 2002, cond-mat/0205527.

[58]  A. M. Stuart,et al.  Γ-Limit for Transition Paths of Maximal Probability , 2011, 1101.3920.

[59]  Tobias Grafke,et al.  String method for generalized gradient flows: computation of rare events in reversible stochastic processes , 2018, Journal of Statistical Mechanics: Theory and Experiment.

[60]  David J. W. Simpson,et al.  Mixed-mode oscillations in a stochastic, piecewise-linear system , 2010, 1010.1504.

[61]  U. Feudel,et al.  When very slow is too fast - collapse of a predator-prey system. , 2019, Journal of theoretical biology.

[62]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[63]  J. García-Ojalvo,et al.  Effects of noise in excitable systems , 2004 .

[64]  C. Budd,et al.  An analysis of the periodically forced PP04 climate model, using the theory of non-smooth dynamical systems , 2020, 2005.08561.

[65]  P. Glendinning,et al.  An Introduction to Piecewise Smooth Dynamics , 2019, Advanced Courses in Mathematics - CRM Barcelona.

[66]  Eric Forgoston,et al.  Converging towards the optimal path to extinction , 2011, Journal of The Royal Society Interface.

[67]  I. Schwartz,et al.  Rare events in networks with internal and external noise , 2017, 1802.09320.

[68]  J. Drake,et al.  Early warning signals of extinction in deteriorating environments , 2010, Nature.

[69]  I. Gyöngy A note on Euler's Approximations , 1998 .

[70]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .