Comparative genomics of the MHC: glimpses into the evolution of the adaptive immune system.

MHC gene organization (size, complexity, gene order) differs markedly among different species, and yet all nonmammalian vertebrates examined to date have a true "class I region" with tight linkage of genes encoding the class I presenting and processing molecules. Three paralogous regions of the human genome contain sets of linked genes homologous to various loci in the MHC class I, class II, and/or class III regions, providing insight into the organization of the "proto MHC" before the emergence of the adaptive immune system in the jawed vertebrates.

[1]  D. Cantrell Lymphocyte signalling: A coordinating role for Vav? , 1998, Current Biology.

[2]  G. Thorgaard,et al.  Expression, linkage, and polymorphism of MHC-related genes in rainbow trout, Oncorhynchus mykiss. , 1999, Journal of immunology.

[3]  P. Pontarotti,et al.  The MHC Big Bang , 1999, Immunological reviews.

[4]  M. Kasahara,et al.  Chromosomal duplication and the emergence of the adaptive immune system. , 1997, Trends in genetics : TIG.

[5]  I. Weissman,et al.  50 million years of chordate evolution: seeking the origins of adaptive immunity. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[6]  M. Flajnik,et al.  Isolation of a classical MHC class I cDNA from an amphibian. Evidence for only one class I locus in the Xenopus MHC. , 1993, Journal of immunology.

[7]  H. Sültmann,et al.  A Contig Map of the Mhc Class I Genomic Region in the Zebrafish Reveals Ancient Synteny , 2000, The Journal of Immunology.

[8]  M. Flajnik,et al.  Primitive synteny of vertebrate major histocompatibility complex class I and class II genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[9]  S. Ohno,et al.  Gene duplication and the uniqueness of vertebrate genomes circa 1970-1999. , 1999, Seminars in cell & developmental biology.

[10]  M. Flajnik,et al.  Trans-species polymorphism of the major histocompatibility complex-encoded proteasome subunit LMP7 in an amphibian genus, Xenopus , 2000, Immunogenetics.

[11]  M. Flajnik,et al.  Expression of MHC class Ia and class Ib during ontogeny: high expression in epithelia and coregulation of class Ia and lmp7 genes. , 1998, Journal of immunology.

[12]  S. Riddell,et al.  Costimulation of CD8αβ T cells by NKG2D via engagement by MIC induced on virus-infected cells , 2001, Nature Immunology.

[13]  C. Auffray,et al.  Assignment of Rfp-Y to the chicken major histocompatibility complex/NOR microchromosome and evidence for high-frequency recombination associated with the nucleolar organizer region. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[14]  G W Butcher,et al.  Why are there two rat TAPs? , 1998, Immunology today.

[15]  Gen Tamiya,et al.  Complete sequence and gene map of a human major histocompatibility complex , 1999 .

[16]  Timothy B. Stockwell,et al.  The Sequence of the Human Genome , 2001, Science.

[17]  P. Parham,et al.  Modes of Salmonid MHC Class I and II Evolution Differ from the Primate Paradigm1 , 2001, The Journal of Immunology.

[18]  W. Yokoyama Natural killer cell receptors. , 1998, Current opinion in immunology.

[19]  M. Kasahara The chromosomal duplication model of the major histocompatibility complex , 1999, Immunological reviews.

[20]  C. Auffray,et al.  The chicken B locus is a minimal essential major histocompatibility complex , 1999, Nature.

[21]  L. Smith,et al.  Expression of SpC3, the sea urchin complement component, in response to lipopolysaccharide , 2000, Immunogenetics.

[22]  J. Ragoussis,et al.  Large-scale chromatin organization of the major histocompatibility complex and other regions of human chromosome 6 and its response to interferon in interphase nuclei. , 2000, Journal of cell science.

[23]  S. Weissman,et al.  Occupancy of upstream regulatory sites in vivo coincides with major histocompatibility complex class I gene expression in mouse tissues , 1992, Molecular and cellular biology.

[24]  G. Elgar,et al.  Identification and Characterization of a β Proteasome Subunit Cluster in the Japanese Pufferfish (Fugu rubripes)1 , 2000, The Journal of Immunology.

[25]  L. Pasquier The phylogenetic origin of antigen-specific receptors. , 2000 .

[26]  A. Hughes,et al.  Phylogenetic tests of the hypothesis of block duplication of homologous genes on human chromosomes 6, 9, and 1. , 1998, Molecular biology and evolution.

[27]  M. Flajnik,et al.  Evolution of the major histocompatibility complex: a current overview. , 1995, Transplant immunology.

[28]  S. Bartl What sharks can tell us about the evolution of MHC genes , 1998, Immunological reviews.

[29]  A. Hughes,et al.  Molecular evolution of the vertebrate immune system , 1997, BioEssays : news and reviews in molecular, cellular and developmental biology.

[30]  Y L Wang,et al.  Zebrafish hox clusters and vertebrate genome evolution. , 1998, Science.

[31]  K. H. Wolfe Yesterday's polyploids and the mystery of diploidization , 2001, Nature Reviews Genetics.

[32]  S. Weissman,et al.  Evolving views of the major histocompatibility complex. , 1997, Blood.

[33]  J. Kaufman,et al.  A “Minimal Essential Mhc” and an “Unrecognized Mhc”: Two Extremes in Selection for Polymorphism , 1995, Immunological reviews.

[34]  David G. Schatz,et al.  Transposition mediated by RAG1 and RAG2 and its implications for the evolution of the immune system , 1998, Nature.

[35]  H. Sültmann,et al.  Linkage relationships and haplotype polymorphism among cichlid Mhc class II B loci. , 1998, Genetics.

[36]  J. Nelson,et al.  The evolution of vertebrate antigen receptors: a phylogenetic approach. , 2000, Molecular biology and evolution.

[37]  A. Alcamí,et al.  Viral mechanisms of immune evasion , 2000, Immunology Today.

[38]  Robert Geisler,et al.  Conservation of Mhc Class III Region Synteny Between Zebrafish and Human as Determined by Radiation Hybrid Mapping1 , 2000, The Journal of Immunology.

[39]  M. Flajnik,et al.  Isolation of low molecular mass polypeptide complementary DNA clones from primitive vertebrates. Implications for the origin of MHC class I-restricted antigen presentation. , 1996, Journal of immunology.

[40]  Mark M. Davis,et al.  T-cell antigen receptor genes and T-cell recognition , 1988, Nature.

[41]  B. Sammut,et al.  Axolotl MHC architecture and polymorphism , 1999, European journal of immunology.

[42]  M. Flajnik,et al.  Major histocompatibility complex gene mapping in the amphibian Xenopus implies a primordial organization. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[43]  R. Minter,et al.  T‐cell and natural killer cell development in thymectomized Xenopus , 1998, Immunological reviews.

[44]  J. Klein,et al.  Evolution of the major histocompatibility complex. , 1986, Critical reviews in immunology.

[45]  E. Fisher,et al.  Paralogy mapping: identification of a region in the human MHC triplicated onto human chromosomes 1 and 9 allows the prediction and isolation of novel PBX and NOTCH loci. , 1996, Genomics.

[46]  J. Marchalonis,et al.  Primordial emergence of the recombination activating gene 1 (RAG1): sequence of the complete shark gene indicates homology to microbial integrases. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  C. Auffray,et al.  At Least One Class I Gene in Restriction Fragment Pattern-Y (Rfp-Y), the Second MHC Gene Cluster in the Chicken, Is Transcribed, Polymorphic, and Shows Divergent Specialization in Antigen Binding Region1 2 , 2001, The Journal of Immunology.

[48]  H. Sültmann,et al.  Linkage Relationships and Haplotype Variation of the Major Histocompatibility Complex Class I A Genes in the Cichlid Fish Oreochromis niloticus , 2000, Marine Biotechnology.

[49]  L. Pilström,et al.  Characterization of MHC class I and β2-microglobulin sequences in Atlantic cod reveals an unusually high number of expressed class I genes , 1999, Immunogenetics.

[50]  G. Elgar,et al.  Characterization of the MHC class I region of the Japanese pufferfish (Fugu rubripes) , 2001, Immunogenetics.

[51]  J. Klein,et al.  The Accordion Model of Mhc Evolution , 1993 .

[52]  C. Chapusot,et al.  Axolotl MHC class II β chain: predominance of one allele and alternative splicing of the β1 domain , 2001 .

[53]  David L. Vaux,et al.  An evolutionary perspective on apoptosis , 1994, Cell.

[54]  J. Kaufman Vertebrates and the evolution of the major histocompatibility complex (MHC) class I and class II molecules , 1988 .

[55]  A. Hughes,et al.  Small genomes for better flyers , 1995, Nature.

[56]  M. Flajnik,et al.  Evolution and developmental regulation of the major histocompatibility complex. , 1995, Critical reviews in immunology.

[57]  E. Davidson,et al.  Conserved linkage among sea urchin homologs of genes encoded in the vertebrate MHC region , 2000 .

[58]  C. V. Oss,et al.  Progress in immunology V , 1985 .

[59]  J. Hansen,et al.  Conservation of an alpha 2 domain within the teleostean world, MHC class I from the rainbow trout Oncorhynchus mykiss. , 1996, Developmental and comparative immunology.

[60]  J. Kaufman,et al.  Co-evolving genes in MHC haplotypes: the "rule" for nonmammalian vertebrates? , 1999, Immunogenetics.

[61]  J. Spring,et al.  Vertebrate evolution by interspecific hybridisation – are we polyploid? , 1997, FEBS letters.

[62]  J. Charlemagne,et al.  T‐cell receptors in ectothermic vertebrates , 1998, Immunological reviews.

[63]  M. Flajnik,et al.  Two ancient allelic lineages at the single classical class I locus in the Xenopus MHC. , 1999, Journal of immunology.

[64]  L. Lundin,et al.  Evolution of the vertebrate genome as reflected in paralogous chromosomal regions in man and the house mouse. , 1993, Genomics.

[65]  J. Trowsdale,et al.  Genetic and functional relationships between MHC and NK receptor genes. , 2001, Immunity.

[66]  Margaret R. Thomson,et al.  Vertebrate genome evolution and the zebrafish gene map , 1998, Nature Genetics.

[67]  H. Lehrach,et al.  Linkage of TATA-binding protein and proteasome subunit C5 genes in mice and humans reveals synteny conserved between mammals and invertebrates. , 1997, Genomics.

[68]  N. M. Brooke,et al.  A molecular timescale for vertebrate evolution , 1998, Nature.

[69]  E. Robey Notch in vertebrates. , 1997, Current opinion in genetics & development.

[70]  T. Ikemura,et al.  Chromosomal localization of the proteasome Z subunit gene reveals an ancient chromosomal duplication involving the major histocompatibility complex. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[71]  Dr. Susumu Ohno Evolution by Gene Duplication , 1970, Springer Berlin Heidelberg.

[72]  P. Pontarotti,et al.  The MHC « Big-Bang » : duplication and exon shuffling during chordate evolution. A hypothetico-deductive approach , 2000 .

[73]  M. Flajnik,et al.  Major histocompatibility complex and immunoglobulin loci visualized by in situ hybridization on Xenopus chromosomes. , 2001, Developmental and comparative immunology.

[74]  M. Flajnik,et al.  Insight into the primordial MHC from studies in ectothermic vertebrates , 1999, Immunological reviews.

[75]  J. Kaufman,et al.  Changes in the immune system during metamorphosis of Xenopus. , 1987, Immunology today.

[76]  A. Sato,et al.  Birth of the Major Histocompatibility Complex , 1998, Scandinavian journal of immunology.