Multimesh finite element methods: Solving PDEs on multiple intersecting meshes

We present a new framework for expressing finite element methods on multiple intersecting meshes: multimesh finite element methods. The framework enables the use of separate meshes to discretize parts of a computational domain that are naturally separate; such as the components of an engine, the domains of a multiphysics problem, or solid bodies interacting under the influence of forces from surrounding fluids or other physical fields. Such multimesh finite element methods are particularly well suited to problems in which the computational domain undergoes large deformations as a result of the relative motion of the separate components of a multi-body system. In the present paper, we formulate the multimesh finite element method for the Poisson equation. Numerical examples demonstrate the optimal order convergence, the numerical robustness of the formulation and implementation in the face of thin intersections and rounding errors, as well as the applicability of the methodology. In the accompanying paper~\cite{mmfem-2}, we analyze the proposed method and prove optimal order convergence and stability.

[1]  E. Rank Adaptive remeshing and h-p domain decomposition , 1992 .

[2]  L. R. Scott,et al.  The Mathematical Theory of Finite Element Methods , 1994 .

[3]  Zhilin Li The immersed interface method using a finite element formulation , 1998 .

[4]  Jeffrey W. Banks,et al.  Numerical methods for solid mechanics on overlapping grids: Linear elasticity , 2010, J. Comput. Phys..

[5]  Tomas Akenine-Möller,et al.  Real-time rendering , 1997 .

[6]  Robert Saye Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I , 2017, J. Comput. Phys..

[7]  Dominik Schillinger,et al.  The Finite Cell Method: A Review in the Context of Higher-Order Structural Analysis of CAD and Image-Based Geometric Models , 2015 .

[8]  P. Hansbo,et al.  Fictitious domain finite element methods using cut elements , 2012 .

[9]  William D. Henshaw,et al.  Parallel computation of three-dimensional flows using overlapping grids with adaptive mesh refinement , 2008, J. Comput. Phys..

[10]  F. de Prenter,et al.  Condition number analysis and preconditioning of the finite cell method , 2016, 1601.05129.

[11]  P. Hansbo,et al.  A Nitsche extended finite element method for incompressible elasticity with discontinuous modulus of elasticity , 2009 .

[12]  R. I. Saye,et al.  High-Order Quadrature Methods for Implicitly Defined Surfaces and Volumes in Hyperrectangles , 2015, SIAM J. Sci. Comput..

[13]  Mats G. Larson,et al.  Efficient implementation of finite element methods on non-matching and overlapping meshes in 3D , 2012, 1210.7076.

[14]  V. E. Henson,et al.  BoomerAMG: a parallel algebraic multigrid solver and preconditioner , 2002 .

[15]  A. Korobenko,et al.  Novel structural modeling and mesh moving techniques for advanced fluid–structure interaction simulation of wind turbines , 2015 .

[16]  F. Kummer,et al.  Highly accurate surface and volume integration on implicit domains by means of moment‐fitting , 2013 .

[17]  Mats G. Larson,et al.  High order cut finite element methods for the Stokes problem , 2015, Advanced Modeling and Simulation in Engineering Sciences.

[18]  William Gropp,et al.  Efficient Management of Parallelism in Object-Oriented Numerical Software Libraries , 1997, SciTools.

[19]  Robert Saye,et al.  Implicit mesh discontinuous Galerkin methods and interfacial gauge methods for high-order accurate interface dynamics, with applications to surface tension dynamics, rigid body fluid-structure interaction, and free surface flow: Part I , 2017, J. Comput. Phys..

[20]  C. Engwer,et al.  An unfitted finite element method using discontinuous Galerkin , 2009 .

[21]  P. Hansbo,et al.  An unfitted finite element method, based on Nitsche's method, for elliptic interface problems , 2002 .

[22]  Ernst Rank,et al.  Multi-level hp-adaptivity: high-order mesh adaptivity without the difficulties of constraining hanging nodes , 2015 .

[23]  ANDRÉ MASSING,et al.  Efficient Implementation of Finite Element Methods on Nonmatching and Overlapping Meshes in Three Dimensions , 2013, SIAM J. Sci. Comput..

[24]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[25]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[26]  Marek Behr,et al.  The Shear-Slip Mesh Update Method , 1999 .

[27]  Christer Ericson,et al.  Real-Time Collision Detection , 2004 .

[28]  J. Fish The s-version of the finite element method , 1992 .

[29]  Robin Bouclier,et al.  Local enrichment of NURBS patches using a non-intrusive coupling strategy: Geometric details, local refinement, inclusion, fracture , 2016 .

[30]  Wolfgang A. Wall,et al.  Quadrature schemes for arbitrary convex/concave volumes and integration of weak form in enriched partition of unity methods , 2013 .

[31]  Mats G. Larson,et al.  A Nitsche-Based Cut Finite Element Method for a Fluid--Structure Interaction Problem , 2013, 1311.2431.

[32]  Ernst Rank,et al.  The finite cell method for three-dimensional problems of solid mechanics , 2008 .

[33]  André Massing,et al.  A stabilized Nitsche overlapping mesh method for the Stokes problem , 2012, Numerische Mathematik.

[34]  Peter Hansbo,et al.  CutFEM: Discretizing geometry and partial differential equations , 2015 .

[35]  Ronald L. Graham,et al.  An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..

[36]  Mats G. Larson,et al.  A high order discontinuous Galerkin Nitsche method for elliptic problems with fictitious boundary , 2013, Numerische Mathematik.

[37]  Ernst Rank,et al.  Finite cell method , 2007 .

[38]  T. Belytschko,et al.  The extended finite element method (XFEM) for solidification problems , 2002 .

[39]  P. Hansbo,et al.  A finite element method for domain decomposition with non-matching grids , 2003 .

[40]  Cv Clemens Verhoosel,et al.  Image-based goal-oriented adaptive isogeometric analysis with application to the micro-mechanical modeling of trabecular bone , 2015 .

[41]  T. Belytschko,et al.  The extended/generalized finite element method: An overview of the method and its applications , 2010 .

[42]  P. Hansbo,et al.  A FINITE ELEMENT METHOD ON COMPOSITE GRIDS BASED ON NITSCHE'S METHOD , 2003 .

[43]  John A. Evans,et al.  An Isogeometric design-through-analysis methodology based on adaptive hierarchical refinement of NURBS, immersed boundary methods, and T-spline CAD surfaces , 2012 .

[44]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[45]  Vicente Hernández,et al.  SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems , 2005, TOMS.

[46]  N. Sukumar,et al.  Generalized Gaussian quadrature rules on arbitrary polygons , 2010 .

[47]  Anders Logg,et al.  The FEniCS Project Version 1.5 , 2015 .

[48]  Peter Hansbo,et al.  Fictitious domain finite element methods using cut elements: I. A stabilized Lagrange multiplier method , 2010 .

[49]  Jonathan Richard Shewchuk,et al.  Adaptive Precision Floating-Point Arithmetic and Fast Robust Geometric Predicates , 1997, Discret. Comput. Geom..

[50]  Christoph Lehrenfeld,et al.  High order unfitted finite element methods on level set domains using isoparametric mappings , 2015, ArXiv.

[51]  Tomas Akenine-Möller,et al.  Real-time rendering, 3rd Edition , 2008 .

[52]  Jacob Fish,et al.  On adaptive multilevel superposition of finite element meshes for linear elastostatics , 1994 .

[53]  Peter Hansbo,et al.  AN UNFITTED FINITE ELEMENT METHOD FOR ELLIPTIC INTERFACE PROBLEMS , 2001 .

[54]  D. Arnold An Interior Penalty Finite Element Method with Discontinuous Elements , 1982 .