Smooth controllability of infinite-dimensional quantum-mechanical systems (11 pages)

Manipulation of infinite-dimensional quantum systems is important to controlling complex quantum dynamics with many practical physical and chemical backgrounds. In this paper, a general investigation is casted to the controllability problem of quantum systems evolving on infinite-dimensional manifolds. Recognizing that such problems are related with infinite-dimensional controllability algebras, we introduce an algebraic mathematical framework to describe quantum control systems possessing such controllability algebras. Then we present the concept of smooth controllability on infinite-dimensional manifolds, and draw the main result on approximate strong smooth controllability. This is a nontrivial extension of the existing controllability results based on the analysis over finite-dimensional vector spaces to analysis over infinite-dimensional manifolds. It also opens up many interesting problems for future studies.

[1]  R. Percacci,et al.  Infinite dimensional algebras in Chern-Simons quantum mechanics , 1991 .

[2]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[3]  Symmetric nonself-adjoint operators in an enveloping algebra , 1976 .

[4]  Nik Weaver,et al.  Time-optimal control of finite quantum systems , 2000 .

[5]  Herschel Rabitz,et al.  Coherent Control of Quantum Dynamics: The Dream Is Alive , 1993, Science.

[6]  Vladimir Nazaikinskii,et al.  Methods of noncommutative analysis : theory and applications , 1996 .

[7]  Yu Tang,et al.  Controllability of pure states for the Pöschl–Teller potential with a dynamical group SU(2) , 2005 .

[8]  S. Lloyd,et al.  DYNAMICAL SUPPRESSION OF DECOHERENCE IN TWO-STATE QUANTUM SYSTEMS , 1998, quant-ph/9803057.

[9]  N. Mukunda Unitary Representations of the Group O(2, 1) in an O(1, 1) Basis , 1967 .

[10]  Herschel A Rabitz,et al.  Quantum Optimally Controlled Transition Landscapes , 2004, Science.

[11]  Wenjin Mao,et al.  Mesoscopic quadratic quantum measurements. , 2004, Physical review letters.

[12]  Jerrold E. Marsden,et al.  Controllability for Distributed Bilinear Systems , 1982 .

[13]  William M. Boothby,et al.  A transitivity problem from control theory , 1975 .

[14]  P. Wegrzyn Parametric resonance in a vibrating cavity , 2004, Proceedings of the International Seminar Days on Diffraction, 2004..

[15]  Wiseman,et al.  Quantum theory of continuous feedback. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[16]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[17]  Marcus Motzkus,et al.  Quantum control of energy flow in light harvesting , 2002, Nature.

[18]  A. Barut,et al.  Theory of group representations and applications , 1977 .

[19]  Francesco Iachello,et al.  Algebraic methods in quantum mechanics: from molecules to polymers , 2002 .

[20]  Olaf Melsheimer Rigged Hilbert space formalism as an extended mathematical formalism for quantum systems. I. General theory , 1974 .

[21]  Rigged Hilbert Space Treatment of Continuous Spectrum , 2001, quant-ph/0109154.

[22]  John W. Clark,et al.  Modelling of quantum mechanical control systems , 1980 .

[23]  R. P. Oserow Untersuchungen der magnetischen Struktur der Antiferromagnetika mittels Neutronen , 1954 .

[24]  T. Tarn,et al.  On the controllability of quantum‐mechanical systems , 1983 .

[25]  Hiroshi Kunita,et al.  On the controllability of nonlinear systems with applications to polynomial systems , 1979 .

[26]  Lloyd,et al.  Almost any quantum logic gate is universal. , 1995, Physical review letters.

[27]  Engel,et al.  Algebraic approach to dissociation from bound states. , 1986, Physical review letters.

[28]  V. Shatalov Methods of Noncommutative Analysis , 1995 .

[29]  E. Davies,et al.  One-parameter semigroups , 1980 .

[30]  John W. Clark,et al.  Analytic controllability of time-dependent quantum control systems , 2004, quant-ph/0409147.

[31]  A. L. Onishchik,et al.  Lie Groups and Lie Algebras III , 1993 .

[32]  Hideki Omori Infinite-Dimensional Lie Groups , 1996 .

[33]  S. Braunstein,et al.  Quantum Information with Continuous Variables , 2004, quant-ph/0410100.

[34]  Comment concerning the optimum control of transformations in an unbounded quantum system , 1991 .

[35]  Ramakrishna,et al.  Controllability of molecular systems. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[36]  Michel C. Delfour,et al.  Quantum Control - Mathematical and Numerical Challenges: CRM Workshop, Montreal, Canada, October 6-11, 2002 , 2003, CRM Workshop.

[37]  William M. Boothby,et al.  Determination of the Transitivity of Bilinear Systems , 1979 .

[38]  E. Sudarshan,et al.  Master analytic representation: Reduction of O(2, 1) in an O(1, 1) basis , 1968 .

[39]  R. M. Hirschorn Global Controllability of Nonlinear Systems , 1976 .

[40]  S. Braunstein,et al.  Quantum computation over continuous variables , 1998 .

[41]  Alexandre Blais Quantum network optimization , 2001 .

[42]  Paul Brumer,et al.  Principles of the Quantum Control of Molecular Processes , 2003 .