Fermi surface transformation at the pseudogap critical point of a cuprate superconductor

[1]  Haofei I. Wei,et al.  Vanishing nematic order beyond the pseudogap phase in overdoped cuprate superconductors , 2020, Proceedings of the National Academy of Sciences.

[2]  D. Graf,et al.  Linear-in temperature resistivity from an isotropic Planckian scattering rate , 2020, Nature.

[3]  S. Chi,et al.  Parallel spin stripes and their coexistence with superconducting ground states at optimal and high doping in La1.6−xNd0.4SrxCuO4 , 2020, Physical Review Research.

[4]  L. Taillefer,et al.  Transport signatures of the pseudogap critical point in the cuprate superconductor Bi2Sr2−xLaxCuO6+δ , 2020, Physical Review B.

[5]  T. Kondo,et al.  Reduced Hall carrier density in the overdoped strange metal regime of cuprate superconductors , 2019, Nature Physics.

[6]  L. Taillefer,et al.  Thermopower across the phase diagram of the cuprate La1.6−xNd0.4SrxCuO4 : Signatures of the pseudogap and charge density wave phases , 2020, 2011.14927.

[7]  Timur K. Kim,et al.  Observation of small Fermi pockets protected by clean CuO2 sheets of a high-Tc superconductor , 2020, Science.

[8]  J. Betts,et al.  Extent of Fermi-surface reconstruction in the high-temperature superconductor HgBa2CuO4+δ , 2020, Proceedings of the National Academy of Sciences.

[9]  J. Debray,et al.  Hidden magnetism at the pseudogap critical point of a cuprate superconductor , 2019, Nature Physics.

[10]  S. Hayden,et al.  Link between magnetism and resistivity upturn in cuprates: a thermal conductivity study of La$_{2-x}$Sr$_x$CuO$_4$ , 2019, 1910.08126.

[11]  Dung-Hai Lee,et al.  The thermal Hall conductance of two doped symmetry-breaking topological insulators , 2019, 1905.04248.

[12]  S. Kivelson,et al.  Fermi surface reconstruction by a charge density wave with finite correlation length , 2019, Physical Review B.

[13]  H. Takagi,et al.  Thermodynamic signatures of quantum criticality in cuprate superconductors , 2018, Nature.

[14]  S. Y. Li,et al.  Wiedemann-Franz Law and Abrupt Change in Conductivity across the Pseudogap Critical Point of a Cuprate Superconductor , 2018, Physical Review X.

[15]  S. Hayden,et al.  Three-Dimensional Fermi Surface of Overdoped La-Based Cuprates. , 2018, Physical review letters.

[16]  A. Georges,et al.  Topological order in the pseudogap metal , 2017, Proceedings of the National Academy of Sciences.

[17]  N. Harrison,et al.  Broken rotational symmetry on the Fermi surface of a high-Tc superconductor , 2017 .

[18]  A. Georges,et al.  Controlling Feynman diagrammatic expansions: Physical nature of the pseudogap in the two-dimensional Hubbard model , 2016, 1608.08402.

[19]  L. Taillefer,et al.  Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6-xNd0.4SrxCuO4 , 2016, 1607.05693.

[20]  N. Harrison,et al.  Single reconstructed Fermi surface pocket in an underdoped single-layer cuprate superconductor , 2016, Nature Communications.

[21]  L. Taillefer,et al.  Change of carrier density at the pseudogap critical point of a cuprate superconductor , 2015, Nature.

[22]  S. Hayden,et al.  Critical Doping for the Onset of Fermi-Surface Reconstruction by Charge-Density-Wave Order in the Cuprate Superconductor La$ _{2-x} $Sr$_{x} $CuO$ _{4}$ , 2015, 1512.00292.

[23]  S. Hayden,et al.  Electron scattering, charge order, and pseudogap physics in La1.6-xNd0.4SrxCuO4 : An angle-resolved photoemission spectroscopy study , 2015, 1509.08294.

[24]  J. Analytis,et al.  Angle-dependent magnetoresistance oscillations of cuprate superconductors in a model with Fermi surface reconstruction and magnetic breakdown , 2015, 1507.08635.

[25]  M. R. Norman,et al.  From quantum matter to high-temperature superconductivity in copper oxides , 2015, Nature.

[26]  B. S. Tan,et al.  Quasiparticle mass enhancement approaching optimal doping in a high-Tc superconductor , 2014, Science.

[27]  F. Balakirev,et al.  Normal-state nodal electronic structure in underdoped high-Tc copper oxides , 2014, Nature.

[28]  E. Schierle,et al.  Resonant x-ray scattering study of charge-density wave correlations in YBa 2 Cu 3 O 6 + x , 2014, 1406.1595.

[29]  S. Sachdev,et al.  Connecting high-field quantum oscillations to zero-field electron spectral functions in the underdoped cuprates , 2014, Nature Communications.

[30]  C. Proust,et al.  Quasiparticle mass enhancement close to the quantum critical point in BaFe2(As(1-x)P(x))2. , 2013, Physical review letters.

[31]  S. Sachdev,et al.  Bond order in two-dimensional metals with antiferromagnetic exchange interactions. , 2013, Physical review letters.

[32]  L. Taillefer,et al.  Hall, Seebeck, and Nernst Coefficients of Underdoped HgBa 2 CuO 4 + δ : Fermi-Surface Reconstruction in an Archetypal Cuprate Superconductor , 2012, 1210.8411.

[33]  D. Scalapino A common thread: The pairing interaction for unconventional superconductors , 2012, 1207.4093.

[34]  Kai-Yu Yang,et al.  A phenomenological theory of the anomalous pseudogap phase in underdoped cuprates , 2011, Reports on progress in physics. Physical Society.

[35]  R. Gross,et al.  Fermi surface of the electron-doped cuprate superconductor Nd2−xCexCuO4 probed by high-field magnetotransport , 2011, 1104.1165.

[36]  J. Betts,et al.  Heat capacity through the magnetic-field-induced resistive transition in an underdoped high-temperature superconductor , 2011 .

[37]  C. Kucharczyk,et al.  Quantum oscillations in the parent pnictide BaFe 2 As 2 : Itinerant electrons in the reconstructed state , 2009, 0902.1172.

[38]  S. Hayden,et al.  Anomalous Criticality in the Electrical Resistivity of La2–xSrxCuO4 , 2009, Science.

[39]  B. Vignolle,et al.  Quantum oscillations in an overdoped high-Tc superconductor , 2008, Nature.

[40]  J. Goodenough,et al.  Linear temperature dependence of resistivity and change in the Fermi surface at the pseudogap critical point of a high-Tc superconductor , 2008 .

[41]  L. Balicas,et al.  Electron pockets in the Fermi surface of hole-doped high-Tc superconductors , 2007, Nature.

[42]  L. Balicas,et al.  Angle dependent magnetoresistance measurements in Tl2Ba2CuO6 and the need for anisotropic scattering , 2007, 0708.1666.

[43]  L. Taillefer,et al.  Quantum oscillations and the Fermi surface in an underdoped high-Tc superconductor , 2007, Nature.

[44]  L. Balicas,et al.  Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor , 2006, cond-mat/0609763.

[45]  H. Harima,et al.  A Drastic Change of the Fermi Surface at a Critical Pressure in CeRhIn5: dHvA Study under Pressure , 2005 .

[46]  S. Blundell,et al.  Angle Dependent Magnetoresistance of the Layered Organic Superconductor κ-(ET)2Cu(NCS)2: Simulation and Experiment , 2003, cond-mat/0312197.

[47]  A. Tremblay,et al.  Hot spots and pseudogaps for hole- and electron-doped high-temperature superconductors. , 2003, Physical review letters.

[48]  L. Balicas,et al.  A coherent three-dimensional Fermi surface in a high-transition-temperature superconductor , 2003, Nature.

[49]  Zhi-Xun Shen,et al.  Angle-resolved photoemission studies of the cuprate superconductors , 2002, cond-mat/0208504.

[50]  Y. Koike,et al.  Crystal growth, transport properties, and crystal structure of the single-crystal La 2-x Ba x CuO 4 (x=0.11) , 2001, cond-mat/0108128.

[51]  R. Laughlin,et al.  Hidden order in the cuprates , 2000, cond-mat/0005443.

[52]  J. Singleton Studies of quasi-two-dimensional organic conductors based on BEDT-TTF using high magnetic fields , 2000 .

[53]  C. Varma,et al.  What angle-resolved photoemission experiments tell about the microscopic theory for high-temperature superconductors. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[54]  Uchida,et al.  Evidence for One-Dimensional Charge Transport in La(2-x-y)Nd(y)Sr(x)CuO(4). , 1999, Science.

[55]  M. Chaparala,et al.  Rapid oscillation and Fermi-surface reconstruction due to spin-density-wave formation in the organic conductor (TMTSF ) 2 PF 6 , 1997 .

[56]  A. Moodenbaugh,et al.  Coexistence of, and Competition between, Superconductivity and Charge-Stripe Order in La 1.6-x Nd 0.4 Sr x CuO 4 , 1996, cond-mat/9608048.

[57]  Lee,et al.  Theory of underdoped cuprates. , 1995, Physical review letters.

[58]  S. Uchida,et al.  Evidence for stripe correlations of spins and holes in copper oxide superconductors , 1995, Nature.

[59]  P. Anderson,et al.  Interlayer Tunneling and Gap Anisotropy in High-Temperature Superconductors , 1993, Science.

[60]  K. Yamaji On the Angle Dependence of the Magnetoresistance in Quasi-Two-Dimensional Organic Superconductors , 1989 .

[61]  R G Chambers,et al.  The Kinetic Formulation of Conduction Problems , 1952 .