Synchronous activity in the visual system.

Synchronous activity among ensembles of neurons is a robust phenomenon observed in many regions of the brain. With the increased use of multielectrode recording techniques, synchronous firing of ensembles of neurons has been found at all levels in the mammalian visual pathway, from the retina to the extrastriate cortex. Here we distinguish three categories of synchrony in the visual system, (a) synchrony from anatomical divergence, (b) stimulus-dependent synchrony, and (c) emergent synchrony (oscillations). Although all three categories have been well documented, their functional significance remains uncertain. We discuss several lines of evidence both for and against a role for synchrony in visual processing: the perceptual consequences of synchronous activity, its ability to carry information, and the transmission of synchronous neural events to subsequent stages of processing.

[1]  P. O. BISHOP,et al.  Synapse Discharge by Single Fibre in Mammalian Visual System , 1958, Nature.

[2]  W. Freygang,et al.  AN ANALYSIS OF EXTRACELLULAR POTENTIALS FROM SINGLE NEURONS IN THE LATERAL GENICULATE NUCLEUS OF THE CAT , 1958, The Journal of general physiology.

[3]  D. Hubel,et al.  Integrative action in the cat's lateral geniculate body , 1961, The Journal of physiology.

[4]  W. Burke,et al.  The interpretation of the extracellular response of single lateral geniculate cells , 1962, The Journal of physiology.

[5]  R W DOTY,et al.  Oscillatory potentials in the visual system of cats and monkeys , 1963, The Journal of physiology.

[6]  M. Verzeano,et al.  Periodic activity in the visual system of the cat. , 1967, Vision research.

[7]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. I. The single spike train. , 1967, Biophysical journal.

[8]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[9]  R. W. Rodieck Maintained activity of cat retinal ganglion cells. , 1967, Journal of neurophysiology.

[10]  K. Gaarder,et al.  Interpretive Study of Evoked Responses Elicted by Gross Saccadic Eye Movements , 1968, Perceptual and motor skills.

[11]  M. Steriade The flash-evoked afterdischarge. , 1968, Brain research.

[12]  D. Perkel,et al.  Simultaneously Recorded Trains of Action Potentials: Analysis and Functional Interpretation , 1969, Science.

[13]  G. P. Moore,et al.  Statistical signs of synaptic interaction in neurons. , 1970, Biophysical journal.

[14]  W. Levick,et al.  Sustained and transient neurones in the cat's retina and lateral geniculate nucleus , 1971, The Journal of physiology.

[15]  W. Levick,et al.  Simultaneous recording of input and output of lateral geniculate neurones. , 1971, Nature: New biology.

[16]  H. L. Bryant,et al.  Correlations of neuronal spike discharges produced by monosynaptic connections and by common inputs. , 1973, Journal of neurophysiology.

[17]  C. Knox,et al.  Cross-correlation functions for a neuronal model. , 1974, Biophysical journal.

[18]  H. Wässle,et al.  The distribution of the alpha type of ganglion cells in the cat's retina , 1975, The Journal of comparative neurology.

[19]  T. Sears,et al.  Short‐term synchronization of intercostal motoneurone activity. , 1976, The Journal of physiology.

[20]  G. Gerstein,et al.  Interactions between cat lateral geniculate neurons. , 1976, Journal of neurophysiology.

[21]  K. Sasaki Electrophysiological studies on the cerebellothalamocortical projections. , 1976, Applied neurophysiology.

[22]  T. Sears,et al.  The synaptic connexions to intercostal motoneurones as revealed by the average common excitation potential. , 1978, The Journal of physiology.

[23]  H. Wässle,et al.  Size, scatter and coverage of ganglion cell receptive field centres in the cat retina. , 1979, The Journal of physiology.

[24]  K. Tanaka,et al.  Cross-Correlation Analysis of Interneuronal Connectivity in cat visual cortex. , 1981, Journal of neurophysiology.

[25]  T E Spraker,et al.  Cross‐correlation analysis of the maintained discharge of rabbit retinal ganglion cells. , 1981, The Journal of physiology.

[26]  D. L. Tuck,et al.  Variations in the time course of the synchronization of intercostal motoneurones in the cat , 1982, The Journal of physiology.

[27]  M. Colonnier,et al.  A laminar analysis of the number of neurons, glia, and synapses in the visual cortex (area 17) of adult macaque monkeys , 1982, The Journal of comparative neurology.

[28]  M. Abeles Role of the cortical neuron: integrator or coincidence detector? , 1982, Israel journal of medical sciences.

[29]  Professor Moshe Abeles,et al.  Local Cortical Circuits , 1982, Studies of Brain Function.

[30]  R H Westgaard,et al.  The spatial distribution of synchronization of intercostal motoneurones in the cat , 1982, The Journal of physiology.

[31]  K. Tanaka Cross-correlation analysis of geniculostriate neuronal relationships in cats. , 1983, Journal of neurophysiology.

[32]  D. Mastronarde Interactions between ganglion cells in cat retina. , 1983, Journal of neurophysiology.

[33]  M W Levine,et al.  Correlation of activity in neighbouring goldfish ganglion cells: relationship between latency and lag. , 1983, The Journal of physiology.

[34]  E E Fetz,et al.  Relation between shapes of post‐synaptic potentials and changes in firing probability of cat motoneurones , 1983, The Journal of physiology.

[35]  D. Mastronarde Correlated firing of cat retinal ganglion cells. I. Spontaneously active inputs to X- and Y-cells. , 1983, Journal of neurophysiology.

[36]  D. Mastronarde Correlated firing of cat retinal ganglion cells. II. Responses of X- and Y-cells to single quantal events. , 1983, Journal of neurophysiology.

[37]  D. V. van Essen,et al.  The representation of the visual field in parvicellular and magnocellular layers of the lateral geniculate nucleus in the macaque monkey , 1984, The Journal of comparative neurology.

[38]  Keiji Tanaka Organization of geniculate inputs to visual cortical cells in the cat , 1985, Vision Research.

[39]  Daniel J. Uhlrich,et al.  Synaptic connectivity of a local circuit neurone in lateral geniculate nucleus of the cat , 1985, Nature.

[40]  B. B. Lee,et al.  A comparison of visual responses of cat lateral geniculate nucleus neurones with those of ganglion cells afferent to them. , 1985, The Journal of physiology.

[41]  T. Wiesel,et al.  Relationships between horizontal interactions and functional architecture in cat striate cortex as revealed by cross-correlation analysis , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[42]  L. Optican,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. III. Information theoretic analysis. , 1987, Journal of neurophysiology.

[43]  D N Mastronarde,et al.  Two classes of single-input X-cells in cat lateral geniculate nucleus. II. Retinal inputs and the generation of receptive-field properties. , 1987, Journal of neurophysiology.

[44]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate inferior temporal cortex. I. Response characteristics. , 1987, Journal of neurophysiology.

[45]  E Kaplan,et al.  Contrast affects the transmission of visual information through the mammalian lateral geniculate nucleus. , 1987, The Journal of physiology.

[46]  D. Mastronarde Correlated firing of retinal ganglion cells , 1989, Trends in Neurosciences.

[47]  W. Singer,et al.  Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties , 1989, Nature.

[48]  H. Spitzer,et al.  Temporal encoding of two-dimensional patterns by single units in primate primary visual cortex. I. Stimulus-response relations. , 1990, Journal of neurophysiology.

[49]  K I Naka,et al.  Dissection of the neuron network in the catfish inner retina. IV. Bidirectional interactions between amacrine and ganglion cells. , 1990, Journal of neurophysiology.

[50]  B J Richmond,et al.  Lateral geniculate neurons in behaving primates. I. Responses to two-dimensional stimuli. , 1991, Journal of neurophysiology.

[51]  R. Douglas,et al.  Opening the grey box , 1991, Trends in Neurosciences.

[52]  C. Koch,et al.  Synaptic Background Activity Influences Spatiotemporal Integration in Single Pyramidal Cells. , 1991, The Biological bulletin.

[53]  Moshe Abeles,et al.  Corticonics: Neural Circuits of Cerebral Cortex , 1991 .

[54]  C. Gray,et al.  Visually evoked oscillations of membrane potential in cells of cat visual cortex. , 1992, Science.

[55]  Paul Antoine Salin,et al.  Spatial and temporal coherence in cortico-cortical connections: a cross-correlation study in areas 17 and 18 in the cat. , 1992, Visual neuroscience.

[56]  D N Mastronarde,et al.  Nonlagged relay cells and interneurons in the cat lateral geniculate nucleus: Receptive-field properties and retinal inputs , 1992, Visual Neuroscience.

[57]  R. Shapley,et al.  Broadband temporal stimuli decrease the integration time of neurons in cat striate cortex , 1992, Visual Neuroscience.

[58]  D. Dacey,et al.  A coupled network for parasol but not midget ganglion cells in the primate retina , 1992, Visual Neuroscience.

[59]  R. Freeman,et al.  Oscillatory discharge in the visual system: does it have a functional role? , 1992, Journal of neurophysiology.

[60]  E. Fetz,et al.  Coherent 25- to 35-Hz oscillations in the sensorimotor cortex of awake behaving monkeys. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[61]  M Fahle,et al.  Figure–ground discrimination from temporal information , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  J. Donoghue,et al.  Oscillations in local field potentials of the primate motor cortex during voluntary movement. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[63]  A. Peters,et al.  Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. , 1993, Cerebral cortex.

[64]  William R. Softky,et al.  The highly irregular firing of cortical cells is inconsistent with temporal integration of random EPSPs , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[65]  A. Aertsen,et al.  Response synchronization in the visual cortex , 1993, Current Opinion in Neurobiology.

[66]  J. Budd,et al.  A numerical analysis of the geniculocortical input to striate cortex in the monkey. , 1994, Cerebral cortex.

[67]  George L. Gerstein,et al.  Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex , 1994, Nature.

[68]  R. Eckhorn,et al.  Stimulus-specific fast oscillations at zero phase between visual areas V1 and V2 of awake monkey. , 1994, Neuroreport.

[69]  William R. Softky,et al.  Sub-millisecond coincidence detection in active dendritic trees , 1994, Neuroscience.

[70]  K. H. Britten,et al.  Power spectrum analysis of bursting cells in area MT in the behaving monkey , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[71]  D. I. Vaney,et al.  Patterns of neuronal coupling in the retina , 1994, Progress in Retinal and Eye Research.

[72]  Eberhard E. Fetz,et al.  Effects of Input Synchrony on the Firing Rate of a Three-Conductance Cortical Neuron Model , 1994, Neural Computation.

[73]  D. Kleinfeld,et al.  On temporal codes and the spatiotemporal response of neurons in the lateral geniculate nucleus. , 1994, Journal of neurophysiology.

[74]  Michael N. Shadlen,et al.  Noise, neural codes and cortical organization , 1994, Current Opinion in Neurobiology.

[75]  I. Ohzawa,et al.  Receptive-field maps of correlated discharge between pairs of neurons in the cat's visual cortex. , 1994, Journal of neurophysiology.

[76]  William R. Softky,et al.  Simple codes versus efficient codes , 1995, Current Opinion in Neurobiology.

[77]  D. Baylor,et al.  Concerted Signaling by Retinal Ganglion Cells , 1995, Science.

[78]  T. Sejnowski,et al.  Reliability of spike timing in neocortical neurons. , 1995, Science.

[79]  Daniel E. Wollman,et al.  Phase locking of neuronal responses to the vertical refresh of computer display monitors in cat lateral geniculate nucleus and striate cortex , 1995, Journal of Neuroscience Methods.

[80]  O. Prospero-Garcia,et al.  Reliability of Spike Timing in Neocortical Neurons , 1995 .

[81]  R. Reid,et al.  Specificity of monosynaptic connections from thalamus to visual cortex , 1995, Nature.

[82]  R. Clay Reid,et al.  Visually evoked calcium action potentials in cat striate cortex , 1995, Nature.

[83]  M. Nicolelis,et al.  Sensorimotor encoding by synchronous neural ensemble activity at multiple levels of the somatosensory system. , 1995, Science.

[84]  W Singer,et al.  Visual feature integration and the temporal correlation hypothesis. , 1995, Annual review of neuroscience.

[85]  C. Koch,et al.  Spatial displacement, but not temporal asynchrony, destroys figural binding , 1995, Vision Research.

[86]  H. Swadlow,et al.  Influence of VPM afferents on putative inhibitory interneurons in S1 of the awake rabbit: evidence from cross-correlation, microstimulation, and latencies to peripheral sensory stimulation. , 1995, Journal of neurophysiology.

[87]  W. Singer,et al.  Long-range synchronization of oscillatory light responses in the cat retina and lateral geniculate nucleus , 1996, Nature.

[88]  J. Movshon,et al.  Spike train encoding by regular-spiking cells of the visual cortex. , 1996, Journal of neurophysiology.

[89]  C. Gray,et al.  Chattering Cells: Superficial Pyramidal Neurons Contributing to the Generation of Synchronous Oscillations in the Visual Cortex , 1996, Science.

[90]  Christof Koch,et al.  Temporal Precision of Spike Trains in Extrastriate Cortex of the Behaving Macaque Monkey , 1999, Neural Computation.

[91]  D H Hubel,et al.  Visual responses in V1 of freely viewing monkeys. , 1996, Cold Spring Harbor symposia on quantitative biology.

[92]  R. Christopher deCharms,et al.  Primary cortical representation of sounds by the coordination of action-potential timing , 1996, Nature.

[93]  Y. Frégnac,et al.  Voltage-clamp measurement of visually-evoked conductances with whole-cell patch recordings in primary visual cortex , 1996, Journal of Physiology-Paris.

[94]  William Bialek,et al.  Spikes: Exploring the Neural Code , 1996 .

[95]  R. Reid,et al.  The processing and encoding of information in the visual cortex , 1996, Current Opinion in Neurobiology.

[96]  M. Livingstone Oscillatory firing and interneuronal correlations in squirrel monkey striate cortex. , 1996, Journal of neurophysiology.

[97]  W. Singer,et al.  Stimulus-dependent synchronization of neuronal responses in the visual cortex of the awake macaque monkey , 1996, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  W. Singer,et al.  Integrator or coincidence detector? The role of the cortical neuron revisited , 1996, Trends in Neurosciences.

[99]  J. Movshon,et al.  Cortical oscillatory responses do not affect visual segmentation , 1996, Vision Research.

[100]  E. Fetz,et al.  Oscillatory activity in sensorimotor cortex of awake monkeys: synchronization of local field potentials and relation to behavior. , 1996, Journal of neurophysiology.

[101]  UTE LEONARDS,et al.  The Influence of Temporal Phase Differences on Texture Segmentation , 1996, Vision Research.

[102]  M. Meister Multineuronal codes in retinal signaling. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[103]  C. Koch,et al.  A brief history of time (constants). , 1996, Cerebral cortex.

[104]  E. Fetz,et al.  Synchronization of neurons during local field potential oscillations in sensorimotor cortex of awake monkeys. , 1996, Journal of neurophysiology.

[105]  R. Reid,et al.  Precisely correlated firing in cells of the lateral geniculate nucleus , 1996, Nature.

[106]  G. Edelman,et al.  Neural dynamics in a model of the thalamocortical system. II. The role of neural synchrony tested through perturbations of spike timing. , 1997, Cerebral cortex.

[107]  B. Knight,et al.  Response variability and timing precision of neuronal spike trains in vivo. , 1997, Journal of neurophysiology.

[108]  Maria V. Sanchez-Vives,et al.  Influence of low and high frequency inputs on spike timing in visual cortical neurons. , 1997, Cerebral cortex.

[109]  S. Bloomfield,et al.  Tracer coupling pattern of amacrine and ganglion cells in the rabbit retina , 1997, The Journal of comparative neurology.

[110]  W Singer,et al.  Role of the temporal domain for response selection and perceptual binding. , 1997, Cerebral cortex.

[111]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[112]  A. Aertsen,et al.  Spike synchronization and rate modulation differentially involved in motor cortical function. , 1997, Science.

[113]  G D Lewen,et al.  Reproducibility and Variability in Neural Spike Trains , 1997, Science.

[114]  W. Singer,et al.  Visuomotor integration is associated with zero time-lag synchronization among cortical areas , 1997, Nature.

[115]  Michael J. Berry,et al.  The structure and precision of retinal spike trains. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[116]  R. Reid,et al.  Synaptic Integration in Striate Cortical Simple Cells , 1998, The Journal of Neuroscience.

[117]  M. Sirota,et al.  Sharp, local synchrony among putative feed-forward inhibitory interneurons of rabbit somatosensory cortex. , 1998, Journal of neurophysiology.

[118]  J. Alonso,et al.  Functional connectivity between simple cells and complex cells in cat striate cortex , 1998, Nature Neuroscience.

[119]  W. Singer,et al.  Modification of discharge patterns of neocortical neurons by induced oscillations of the membrane potential , 1998, Neuroscience.

[120]  Michael J. Berry,et al.  Refractoriness and Neural Precision , 1997, The Journal of Neuroscience.

[121]  Randolph Blake,et al.  Visual features that vary together over time group together over space , 1998, Nature Neuroscience.

[122]  R. Blake,et al.  Visual features that vary together over time group together over space , 1998, Nature Neuroscience.

[123]  R. Reid,et al.  Paired-spike interactions and synaptic efficacy of retinal inputs to the thalamus , 1998, Nature.

[124]  T. Albright,et al.  Efficient Discrimination of Temporal Patterns by Motion-Sensitive Neurons in Primate Visual Cortex , 1998, Neuron.

[125]  W. Singer,et al.  Synchronization of Visual Responses between the Cortex, Lateral Geniculate Nucleus, and Retina in the Anesthetized Cat , 1998, The Journal of Neuroscience.

[126]  W. Newsome,et al.  The Variable Discharge of Cortical Neurons: Implications for Connectivity, Computation, and Information Coding , 1998, The Journal of Neuroscience.

[127]  Y. Dan,et al.  Coding of visual information by precisely correlated spikes in the lateral geniculate nucleus , 1998, Nature Neuroscience.

[128]  Y. Frégnac,et al.  Visual input evokes transient and strong shunting inhibition in visual cortical neurons , 1998, Nature.

[129]  Iman H. Brivanlou,et al.  Mechanisms of Concerted Firing among Retinal Ganglion Cells , 1998, Neuron.

[130]  D. Oertel The role of timing in the brain stem auditory nuclei of vertebrates. , 1999, Annual review of physiology.

[131]  P A Fuchs,et al.  Mechanisms of hair cell tuning. , 1999, Annual review of physiology.

[132]  W. Samson Adrenomedullin and the control of fluid and electrolyte homeostasis. , 1999, Annual review of physiology.

[133]  H. W. Harris,et al.  Modulation of vasopressin-elicited water transport by trafficking of aquaporin2-containing vesicles. , 1999, Annual review of physiology.

[134]  S. Ward,et al.  Cellular and molecular basis for electrical rhythmicity in gastrointestinal muscles. , 1999, Annual review of physiology.

[135]  J. West,et al.  Structure, strength, failure, and remodeling of the pulmonary blood-gas barrier. , 1999, Annual review of physiology.

[136]  A. G. Roseberry,et al.  Desensitization of G-protein-coupled receptors in the cardiovascular system. , 1999, Annual review of physiology.

[137]  D. Paul,et al.  Genetic diseases and gene knockouts reveal diverse connexin functions. , 1999, Annual review of physiology.

[138]  G. H. Gold,et al.  Controversial issues in vertebrate olfactory transduction. , 1999, Annual review of physiology.

[139]  S. Seino ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. , 1999, Annual review of physiology.

[140]  T. Südhof,et al.  Genetics of synaptic vesicle function: toward the complete functional anatomy of an organelle. , 1999, Annual review of physiology.

[141]  F. Amiri,et al.  Regulation of natriuretic peptide secretion by the heart. , 1999, Annual review of physiology.

[142]  J. Drazen,et al.  Mouse models of airway responsiveness: physiological basis of observed outcomes and analysis of selected examples using these outcome indicators. , 1999, Annual review of physiology.

[143]  J. H. Casseday,et al.  Timing in the auditory system of the bat. , 1999, Annual review of physiology.

[144]  W G Regehr,et al.  Timing of synaptic transmission. , 1999, Annual review of physiology.

[145]  G. Farrugia Ionic conductances in gastrointestinal smooth muscles and interstitial cells of Cajal. , 1999, Annual review of physiology.

[146]  E Niggli,et al.  Localized intracellular calcium signaling in muscle: calcium sparks and calcium quarks. , 1999, Annual review of physiology.

[147]  L. Trussell,et al.  Synaptic mechanisms for coding timing in auditory neurons. , 1999, Annual review of physiology.