Texture classification using local and global histogram equalization and the Lempel-Ziv-Welch algorithm

This paper presents a new texture classification method using histogram equalization and the Lempel-Ziv-Welch algorithm. Two versions of the classifier are presented. The first version uses global histogram equalization and the second one uses local histogram equalization. After local or global histogram equalization, each texture sample is encoded by LZW using pre-constructed dictionaries and assigned to the class whose dictionaries minimize the coding rate. Both versions are tested under different conditions of gray-level variations.

[1]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[2]  Terry A. Welch,et al.  A Technique for High-Performance Data Compression , 1984, Computer.

[3]  Trygve Randen,et al.  Filtering for Texture Classification: A Comparative Study , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  T. Southard,et al.  Detection of simulated osteoporosis in maxillae using radiographic texture analysis , 1996, IEEE Transactions on Biomedical Engineering.

[5]  Weiler Alves Finamore,et al.  Lossy Lempel-Ziv algorithm for large alphabet sources and applications to image compression , 1996, Proceedings of 3rd IEEE International Conference on Image Processing.

[6]  Jacob Ziv,et al.  On classification with empirically observed statistics and universal data compression , 1988, IEEE Trans. Inf. Theory.

[7]  David G. Stork,et al.  Pattern Classification , 1973 .

[8]  Abraham Lempel,et al.  Compression of individual sequences via variable-rate coding , 1978, IEEE Trans. Inf. Theory.

[9]  F. S. Cohen,et al.  Classification of Rotated and Scaled Textured Images Using Gaussian Markov Random Field Models , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[10]  M. Porat,et al.  Localized texture processing in vision: analysis and synthesis in the Gaborian space , 1989, IEEE Transactions on Biomedical Engineering.

[11]  Jerry D. Gibson,et al.  Handbook of Image and Video Processing , 2000 .

[12]  Neri Merhav,et al.  A measure of relative entropy between individual sequences with application to universal classification , 1993, IEEE Trans. Inf. Theory.

[13]  Matti Pietikäinen,et al.  Multiresolution Gray-Scale and Rotation Invariant Texture Classification with Local Binary Patterns , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[14]  Arun Ross,et al.  An introduction to biometric recognition , 2004, IEEE Transactions on Circuits and Systems for Video Technology.

[15]  Tieniu Tan,et al.  Biometric personal identification based on iris patterns , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[16]  Yaonan Wang,et al.  Texture classification using the support vector machines , 2003, Pattern Recognit..

[17]  Paolo Gamba,et al.  Texture-based characterization of urban environments on satellite SAR images , 2003, IEEE Trans. Geosci. Remote. Sens..

[18]  Serap A. Savari,et al.  Redundancy of the Lempel-Ziv-Welch code , 1997, Proceedings DCC '97. Data Compression Conference.

[19]  A. Kundu,et al.  Rotation and Gray Scale Transform Invariant Texture Identification using Wavelet Decomposition and Hidden Markov Model , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Marijke F. Augusteijn,et al.  Performance evaluation of texture measures for ground cover identification in satellite images by means of a neural network classifier , 1995, IEEE Trans. Geosci. Remote. Sens..

[21]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[22]  Fritz Albregtsen,et al.  New texture features based on the complexity curve , 1999, Pattern Recognit..