A Partial Splitting Augmented Lagrangian Method for Low Patch-Rank Image Decomposition

[1]  Bingsheng He,et al.  The direct extension of ADMM for multi-block convex minimization problems is not necessarily convergent , 2014, Mathematical Programming.

[2]  Michael K. Ng,et al.  Coupled Variational Image Decomposition and Restoration Model for Blurred Cartoon-Plus-Texture Images With Missing Pixels , 2013, IEEE Transactions on Image Processing.

[3]  Xiaoming Yuan,et al.  An alternating direction-based contraction method for linearly constrained separable convex programming problems , 2013 .

[4]  Xiaoming Yuan,et al.  An ADM-based splitting method for separable convex programming , 2013, Comput. Optim. Appl..

[5]  Stanley Osher,et al.  A Low Patch-Rank Interpretation of Texture , 2013, SIAM J. Imaging Sci..

[6]  G. Burton Sobolev Spaces , 2013 .

[7]  Pierre Weiss,et al.  Variational Algorithms to Remove Stationary Noise: Applications to Microscopy Imaging , 2012, IEEE Transactions on Image Processing.

[8]  Xiaoming Yuan,et al.  A Note on the Alternating Direction Method of Multipliers , 2012, J. Optim. Theory Appl..

[9]  Luminita A. Vese,et al.  Dual Norm Based Iterative Methods for Image Restoration , 2012, Journal of Mathematical Imaging and Vision.

[10]  Tao Mei,et al.  Image Decomposition With Multilabel Context: Algorithms and Applications , 2011, IEEE Transactions on Image Processing.

[11]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[12]  Heinz H. Bauschke,et al.  Convex Analysis and Monotone Operator Theory in Hilbert Spaces , 2011, CMS Books in Mathematics.

[13]  Gabriel Peyré,et al.  Locally Parallel Texture Modeling , 2011, SIAM J. Imaging Sci..

[14]  Yi Ma,et al.  Robust principal component analysis? , 2009, JACM.

[15]  Xiaoming Yuan,et al.  Recovering Low-Rank and Sparse Components of Matrices from Incomplete and Noisy Observations , 2011, SIAM J. Optim..

[16]  Jian-Feng Cai,et al.  Simultaneous cartoon and texture inpainting , 2010 .

[17]  Mohamed-Jalal Fadili,et al.  Image Decomposition and Separation Using Sparse Representations: An Overview , 2010, Proceedings of the IEEE.

[18]  John Wright,et al.  Robust Principal Component Analysis: Exact Recovery of Corrupted Low-Rank Matrices via Convex Optimization , 2009, NIPS.

[19]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[20]  L. Vese,et al.  IMAGE RECOVERY USING FUNCTIONS OF BOUNDED VARIATION AND SOBOLEV SPACES OF NEGATIVE DIFFERENTIABILITY , 2009 .

[21]  Xianghua Xie,et al.  Handbook of Texture Analysis , 2008 .

[22]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.

[23]  Wotao Yin,et al.  A comparison of three total variation based texture extraction models , 2007, J. Vis. Commun. Image Represent..

[24]  Gene H. Golub,et al.  Generalized cross-validation as a method for choosing a good ridge parameter , 1979, Milestones in Matrix Computation.

[25]  Jean-Michel Morel,et al.  Neighborhood filters and PDE’s , 2006, Numerische Mathematik.

[26]  Dianne P. O'Leary,et al.  Deblurring Images: Matrices, Spectra, and Filtering (Fundamentals of Algorithms 3) (Fundamentals of Algorithms) , 2006 .

[27]  Tony F. Chan,et al.  Structure-Texture Image Decomposition—Modeling, Algorithms, and Parameter Selection , 2006, International Journal of Computer Vision.

[28]  Stacey Levine,et al.  An Adaptive Variational Model for Image Decomposition , 2005, EMMCVPR.

[29]  Michael Elad,et al.  Submitted to Ieee Transactions on Image Processing Image Decomposition via the Combination of Sparse Representations and a Variational Approach , 2022 .

[30]  Antonin Chambolle,et al.  Dual Norms and Image Decomposition Models , 2005, International Journal of Computer Vision.

[31]  G. Aubert,et al.  Modeling Very Oscillating Signals. Application to Image Processing , 2005 .

[32]  I. Daubechiesa,et al.  Variational image restoration by means of wavelets : Simultaneous decomposition , deblurring , and denoising , 2005 .

[33]  Antonin Chambolle,et al.  Image Decomposition into a Bounded Variation Component and an Oscillating Component , 2005, Journal of Mathematical Imaging and Vision.

[34]  Luminita A. Vese,et al.  Image Decomposition Using Total Variation and div(BMO) , 2005, Multiscale Model. Simul..

[35]  Jean-Michel Morel,et al.  A Review of Image Denoising Algorithms, with a New One , 2005, Multiscale Model. Simul..

[36]  A. Chambolle Practical, Unified, Motion and Missing Data Treatment in Degraded Video , 2004, Journal of Mathematical Imaging and Vision.

[37]  M. Nikolova An Algorithm for Total Variation Minimization and Applications , 2004 .

[38]  J. Morel,et al.  On image denoising methods , 2004 .

[39]  Alfred O. Hero,et al.  A Fast Spectral Method for Active 3D Shape Reconstruction , 2004, Journal of Mathematical Imaging and Vision.

[40]  Stanley Osher,et al.  Modeling Textures with Total Variation Minimization and Oscillating Patterns in Image Processing , 2003, J. Sci. Comput..

[41]  Guillermo Sapiro,et al.  Simultaneous structure and texture image inpainting , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[42]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[43]  Stanley Osher,et al.  Image Decomposition and Restoration Using Total Variation Minimization and the H1 , 2003, Multiscale Model. Simul..

[44]  S. Osher,et al.  IMAGE DECOMPOSITION AND RESTORATION USING TOTAL VARIATION MINIMIZATION AND THE H−1 NORM∗ , 2002 .

[45]  Yves Meyer,et al.  Oscillating Patterns in Image Processing and Nonlinear Evolution Equations: The Fifteenth Dean Jacqueline B. Lewis Memorial Lectures , 2001 .

[46]  Marc Teboulle,et al.  A proximal-based decomposition method for convex minimization problems , 1994, Math. Program..

[47]  L. Rudin,et al.  Nonlinear total variation based noise removal algorithms , 1992 .

[48]  Bernard J. Wood,et al.  Atlas of Igneous Rocks and Their Textures , 1983 .

[49]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[50]  B. Mercier,et al.  A dual algorithm for the solution of nonlinear variational problems via finite element approximation , 1976 .

[51]  R. Glowinski,et al.  Sur l'approximation, par éléments finis d'ordre un, et la résolution, par pénalisation-dualité d'une classe de problèmes de Dirichlet non linéaires , 1975 .

[52]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .