Experimental and numerical investigations of dissipation mechanisms in particle dampers

Particle dampers are passive devices allowing strong damping of structures vibrating in harsh environment. We investigate the energy dissipation in a rigid enclosure attached to a shaker and partially filled with particles. Our experiments match an analytical description, which we corroborate then with discrete element method simulations. We show that the loss factor does not depend on the material of the particles or their number, but heavily relies on the total mass of the embedded grains and on the driving magnitude only. Our measurements reveal the contribution of the viscous flow of air surrounding the grains to the overall loss factor of the dampers.

[1]  H. Hertz Ueber die Berührung fester elastischer Körper. , 1882 .

[2]  Hertz On the Contact of Elastic Solids , 1882 .

[3]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[4]  Isao Yokomichi,et al.  Impact Damper with Granular Materials : 2nd Report, Both Sides Impacts in a Vertical Oscillating System , 1985 .

[5]  Joel Koplik,et al.  Theory of dynamic permeability and tortuosity in fluid-saturated porous media , 1987, Journal of Fluid Mechanics.

[6]  S. Fauve,et al.  Subharmonic Instabilities and Defects in a Granular Layer under Vertical Vibrations , 1989 .

[7]  Mehta,et al.  Novel temporal behavior of a nonlinear dynamical system: The completely inelastic bouncing ball. , 1990, Physical review letters.

[8]  Yutaka Tsuji,et al.  Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe , 1992 .

[9]  Sean McNamara,et al.  Inelastic collapse and clumping in a one-dimensional granular medium , 1992 .

[10]  Sami F. Masri,et al.  RESPONSE OF IMPACT DAMPERS WITH GRANULAR MATERIALS UNDER RANDOM EXCITATION , 1996 .

[11]  S. Fauve,et al.  Collision of a 1-D column of beads with a wall , 1998 .

[12]  J. Allard,et al.  Sound propagation in air-saturated random packings of beads , 1998 .

[13]  Sami F. Masri,et al.  An Experimental Investigation of Particle Dampers Under Harmonic Excitation , 1998 .

[14]  Vikram K. Kinra,et al.  PARTICLE IMPACT DAMPING , 1999 .

[15]  Clara Saluena,et al.  DISSIPATIVE PROPERTIES OF VIBRATED GRANULAR MATERIALS , 1999 .

[16]  A. S. Velichkovich,et al.  Vibration-Impact Damper for Controlling the Dynamic Drillstring Conditions , 2001 .

[17]  Whitney Rocketdyne,et al.  Non-Obstructive Particle Damping: New Experiences and Capabilities , 2008 .

[18]  C. Laroche,et al.  Energy of a single bead bouncing on a vibrating plate: experiments and numerical simulations. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[19]  C. Laroche,et al.  Pressure measurement in two-dimensional horizontal granular gases. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[20]  S. Sen,et al.  The quasi-equilibrium phase in nonlinear 1D systems , 2004 .

[21]  Kun S. Marhadi,et al.  Particle impact damping: effect of mass ratio, material, and shape , 2005 .

[22]  Time resolved particle dynamics in granular convection , 2004, cond-mat/0402040.

[23]  Adam Sokolow,et al.  Solitary wave trains in granular chains: experiments, theory and simulations , 2007, 0712.0006.

[24]  Noureddine Bouhaddi,et al.  An experimental study of a multi-particle impact damper , 2009 .

[25]  Leon M Keer,et al.  Investigation of particle damping mechanism via particle dynamics simulations , 2009 .

[26]  O. Dazel,et al.  Nonlinear Biot waves in porous media with application to unconsolidated granular media. , 2010, The Journal of the Acoustical Society of America.

[27]  V. Popov Contact Mechanics and Friction , 2010 .

[28]  J. A. Elliott,et al.  On an analytical solution for the damped Hertzian spring , 2011 .

[29]  Luis A. Pugnaloni,et al.  Effective mass overshoot in single degree of freedom mechanical systems with a particle damper , 2011, 1105.0304.

[30]  Yingchun Shan,et al.  Application of particle damping for vibration attenuation in brake drum , 2011 .

[31]  Luis A. Pugnaloni,et al.  Universal response of optimal granular damping devices , 2012, 1201.1866.

[32]  C. Manuel Carlevaro,et al.  Nonlinear dynamic analysis of an optimal particle damper , 2011, 1110.2800.

[33]  Noureddine Bouhaddi,et al.  The loss factor experimental characterisation of the non-obstructive particles damping approach , 2013 .

[34]  F. Pacheco-Vázquez,et al.  Rebound of a confined granular material: combination of a bouncing ball and a granular damper , 2013, Scientific Reports.

[35]  Interstitial gas effect on vibrated granular columns. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  Anthony Richard Thornton,et al.  Resonance effects on the dynamics of dense granular beds: achieving optimal energy transfer in vibrated granular systems , 2015 .

[37]  E. Bertin,et al.  Dynamics of a bouncing ball , 2014, 1405.3482.

[38]  M. Heckel,et al.  Probing the validity of an effective-one-particle description of granular dampers in microgravity , 2015 .