Unsupervised learning of image manifolds by semidefinite programming

Can we detect low dimensional structure in high dimensional data sets of images and video? The problem of dimensionality reduction arises often in computer vision and pattern recognition. In this paper, we propose a new solution to this problem based on semidefinite programming. Our algorithm can be used to analyze high dimensional data that lies on or near a low dimensional manifold. It overcomes certain limitations of previous work in manifold learning, such as Isomap and locally linear embedding. We illustrate the algorithm on easily visualized examples of curves and surfaces, as well as on actual images of faces, handwritten digits, and solid objects.

[1]  J. Nash The imbedding problem for Riemannian manifolds , 1956 .

[2]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[3]  Yann LeCun,et al.  Efficient Pattern Recognition Using a New Transformation Distance , 1992, NIPS.

[4]  Jonathan J. Hull,et al.  A Database for Handwritten Text Recognition Research , 1994, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Tomaso Poggio,et al.  Image Representations for Visual Learning , 1996, Science.

[6]  Stephen P. Boyd,et al.  Semidefinite Programming , 1996, SIAM Rev..

[7]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[8]  Bernhard Schölkopf,et al.  Nonlinear Component Analysis as a Kernel Eigenvalue Problem , 1998, Neural Computation.

[9]  B. Borchers A C library for semidefinite programming , 1999 .

[10]  H. Sebastian Seung,et al.  Learning the parts of objects by non-negative matrix factorization , 1999, Nature.

[11]  B. Borchers CSDP, A C library for semidefinite programming , 1999 .

[12]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[13]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[14]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[15]  H. Sebastian Seung,et al.  The Manifold Ways of Perception , 2000, Science.

[16]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Robert Pless Embedding Images in non-Flat Spaces , 2001 .

[18]  Stephen P. Boyd,et al.  A rank minimization heuristic with application to minimum order system approximation , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[19]  Alexander J. Smola,et al.  Learning with Kernels: support vector machines, regularization, optimization, and beyond , 2001, Adaptive computation and machine learning series.

[20]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[21]  I. Jolliffe Principal Component Analysis , 2002 .

[22]  Matthew Brand,et al.  Charting a Manifold , 2002, NIPS.

[23]  Renato D. C. Monteiro,et al.  A nonlinear programming algorithm for solving semidefinite programs via low-rank factorization , 2003, Math. Program..

[24]  Hongyuan Zha,et al.  Isometric Embedding and Continuum ISOMAP , 2003, ICML.

[25]  D. Donoho,et al.  Hessian eigenmaps: Locally linear embedding techniques for high-dimensional data , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Nicolas Le Roux,et al.  Out-of-Sample Extensions for LLE, Isomap, MDS, Eigenmaps, and Spectral Clustering , 2003, NIPS.

[27]  David J. Kriegman,et al.  Video-based face recognition using probabilistic appearance manifolds , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[28]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[29]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[30]  Shiri Gordon,et al.  Applying the information bottleneck principle to unsupervised clustering of discrete and continuous image representations , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[31]  Nello Cristianini,et al.  Learning the Kernel Matrix with Semidefinite Programming , 2002, J. Mach. Learn. Res..

[32]  John Blitzer,et al.  Hierarchical Distributed Representations for Statistical Language Modeling , 2004, NIPS.

[33]  Kilian Q. Weinberger,et al.  Learning a kernel matrix for nonlinear dimensionality reduction , 2004, ICML.

[34]  A. Elgammal,et al.  Separating style and content on a nonlinear manifold , 2004, CVPR 2004.

[35]  Robert Pless Differential Structure in non-Linear Image Embedding Functions , 2004, 2004 Conference on Computer Vision and Pattern Recognition Workshop.

[36]  H. Zha,et al.  Principal manifolds and nonlinear dimensionality reduction via tangent space alignment , 2004, SIAM J. Sci. Comput..

[37]  Christopher J. C. Burges,et al.  Geometric Methods for Feature Extraction and Dimensional Reduction , 2005 .

[38]  Michael H. Bowling,et al.  Action respecting embedding , 2005, ICML.

[39]  Lawrence K. Saul,et al.  Analysis and extension of spectral methods for nonlinear dimensionality reduction , 2005, ICML.

[40]  Kilian Q. Weinberger,et al.  Nonlinear Dimensionality Reduction by Semidefinite Programming and Kernel Matrix Factorization , 2005, AISTATS.

[41]  Robert Pless,et al.  Isomap and Nonparametric Models of Image Deformation , 2005, 2005 Seventh IEEE Workshops on Applications of Computer Vision (WACV/MOTION'05) - Volume 1.