On the asymptotic number of inequivalent binary self-dual codes

Let @J"n be the number of inequivalent self-dual codes in F"2^2^n. We prove that lim"n"->"~(2n)[email protected]^-^1^2^n^(^n^-^1^)@J"n=1, where @[email protected]?"j"="1^~(1+2^-^j)~2.38423. Let @D"n be the number of inequivalent doubly even self-dual codes in F"2^8^n. We also prove that lim"n"->"~(8n)[email protected]^-^2^n^(^4^n^-^3^)@D"n=1.

[1]  N. J. A. Sloane,et al.  The Binary Self-Dual Codes of Length up to 32: A Revised Enumeration , 1992, J. Comb. Theory, Ser. A.

[2]  Xiang-dong Hou,et al.  On the asymptotic number of non-equivalent binary linear codes , 2007, Finite Fields Their Appl..

[3]  Robert F. Lax,et al.  On the character of Sn acting on subspaces of Pnq , 2004, Finite Fields Their Appl..

[4]  E. Artin,et al.  Geometric Algebra: Artin/Geometric , 1988 .

[5]  Donald J. Newman Analytic Number Theory , 1997 .

[6]  R. Tennant Algebra , 1941, Nature.

[7]  John H. Conway,et al.  On the Enumeration of Self-Dual Codes , 1980, J. Comb. Theory, Ser. A.

[8]  R. Lax On the character of S n acting on subspaces of F q n , 2004 .

[9]  Kevin T. Phelps,et al.  Almost All Self-Dual Codes Are Rigid , 1992, J. Comb. Theory, Ser. A.

[10]  Marcel Wild,et al.  The Asymptotic Number of Binary Codes and Binary Matroids , 2004, SIAM J. Discret. Math..

[11]  G. Hardy,et al.  Asymptotic Formulaæ in Combinatory Analysis , 1918 .

[12]  Béla Bollobás,et al.  Random Graphs , 1985 .

[13]  Xiang-Dong Hou,et al.  On the asymptotic number of non-equivalent q-ary linear codes , 2005, Journal of combinatorial theory. Series A.

[14]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[15]  E. Wright Graphs on unlabelled nodes with a given number of edges , 1971 .

[16]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[17]  Marcel Wild,et al.  The Asymptotic Number of Inequivalent Binary Codes and Nonisomorphic Binary Matroids , 2000 .