Eigenvalues of the Laplacian in Two Dimensions

The eigenvalue problem for the Laplace operator in two dimensions is classical in mathematics and physics. Nevertheless, computational methods for estimating the eigenvalues are still of much current interest, particularly in applications to acoustic and electromagnetic waveguides. Although our primary interest is with the computational methods, there are a number of theoretical results on the behavior of the eigenvalues and eigenfunctions that are useful for understanding the methods and, in addition, are of interest in themselves. These results are discussed first and then the various computational methods that have been used to estimate the eigenvalues are reviewed with particular emphasis on methods that give error bounds. Some of the more powerful techniques available are illustrated by applying them to a model problem.

[1]  K. Nagaya Vibration of a membrane having a circular outer boundary and an eccentric circular inner boundary , 1977 .

[2]  G. N. Tsandoulas,et al.  Modal Characteristics of Quadruple-Ridged Circular and Square Waveguides (Short Papers) , 1974 .

[3]  Ward C. Sangren,et al.  Codes for the Classical Membrane Problem , 1957, JACM.

[4]  M. J. Hine,et al.  Eigenvalues for a uniform fluid waveguide with an eccentric-annulus cross-section , 1971 .

[5]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[6]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[7]  H. Stalzer,et al.  Modes of crossed rectangular waveguide , 1976 .

[8]  H. H. Meinke,et al.  TE- and TM-waves in waveguides of very general cross section , 1963 .

[9]  Determination of the second natural frequency of simply-supported regular polygonal plates , 1977 .

[10]  Kosuke Nagaya,et al.  Numerical Experiments on the Determination of Cutoff Frequencies of Waveguides of Arbitrary Cross Section , 1980 .

[11]  J. Bramble,et al.  Rate of convergence estimates for nonselfadjoint eigenvalue approximations , 1973 .

[12]  J. Campbell Determination of SSOR-SI iteration parameters , 1984 .

[13]  J. Kuttler Finite Difference Approximations for Eigenvalues of Uniformly Elliptic Operators , 1970 .

[14]  K. Stewartson,et al.  On hearing the shape of a drum: further results , 1971, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Hans F. Weinberger,et al.  Upper and lower bounds for eigenvalues by finite difference methods , 1956 .

[16]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[17]  P. Torvik,et al.  A method for improving the estimation of membrane frequencies , 1972 .

[18]  B. A. Troesch,et al.  Eigenfrequencies of an elliptic membrane , 1973 .

[19]  E. Reiss,et al.  Free vibrations of rhombic plates and membranes , 1973 .

[20]  L. L. Fontenot,et al.  On the Vibrations of Parabolic Membranes , 1966 .

[21]  P. Daly,et al.  Polar Geometry Waveguides by Finite-Element Methods , 1974 .

[22]  H. Yee,et al.  Cutoff Frequencies of Eccentric Waveguides , 1966 .

[23]  Giuseppe Chiti,et al.  A reverse Hölder inequality for the eigenfunctions of linear second order elliptic operators , 1982 .

[24]  J. B. Davies,et al.  Review of methods for numerical solution of the hollow-waveguide problem , 1972 .

[25]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[26]  Å. Pleijel A study of certain Green's functions with applications in the theory of vibrating membranes , 1954 .

[27]  Q. C. Tham Modes and Cutoff Frequencies of Crossed Rectangular Waveguides , 1977 .

[28]  W. Wasow,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[29]  J. Kretzschmar,et al.  Wave Propagation in Hollow Conducting Elliptical Waveguides , 1970 .

[30]  C. B. Moler,et al.  Bounds for Eigenvalues and Eigenvectors of Symmetric Operators , 1968 .

[31]  George E. Forsythe,et al.  Asymptotic lower bounds for the frequencies of certain polygonal membranes. , 1954 .

[32]  N. L. Schryer Constructive Approximation of Solutions to Linear Elliptic Boundary Value Problems , 1972 .

[33]  M. G. Milsted,et al.  Use of trigonometric terms in the finite element method with application to vibrating membranes , 1974 .

[34]  H. D. Conway The Bending, Buckling, and Flexural Vibration of Simply Supported Polygonal Plates by Point-Matching , 1961 .

[35]  V. G. Sigillito,et al.  Explicit A Priori Inequalities with Applications to Boundary Value Problems. , 1978 .

[36]  S. B. Roberts The Eigenvalue Problem for Two-Dimensional Regions With Irregular Boundaries , 1967 .

[37]  Jagannath Mazumdar,et al.  A REVIEW OF APPROXIMATE METHODS FOR DETERMINING THE VIBRATIONAL MODES OF MEMBRANES , 1979 .

[38]  A.-M.A. El-Sherbiny Cutoff Wavelengths of Ridged, Circular, and Elliptic Guides , 1973 .

[39]  J. Bramble,et al.  Effects of Boundary Regularity on the Discretization Error in the Fixed Membrane Eigenvalue Problem , 1968 .

[40]  V. G. Sigillito,et al.  Bounding Eigenvalues of Elliptic Operators , 1978 .

[41]  A. Wexler,et al.  An Accurate Finite-Difference Method for Higher Order Waveguide Modes , 1968 .

[42]  R. H. T. Bates,et al.  Point matching computation of transverse resonances , 1973 .

[43]  C. Moler,et al.  APPROXIMATIONS AND BOUNDS FOR EIGENVALUES OF ELLIPTIC OPERATORS , 1967 .

[44]  J. B. Davies,et al.  Numerical solution of uniform hollow waveguides with boundaries of arbitrary shape , 1966 .

[45]  H. Weinberger,et al.  A Faber‐Krahn Inequality for Wedge‐Like Membranes , 1960 .

[46]  J. K. Reid,et al.  An Elliptic Eigenvalue Problem for a Reentrant Region , 1965 .

[47]  Dorothy L. Bernstein Existence theorems in partial differential equations , 1952, The Mathematical Gazette.

[48]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[49]  George E. Forsythe,et al.  Finite-Difference Methods for Partial Differential Equations , 1961 .

[50]  B. E. Spielman,et al.  Waveguides of Arbitrary Cross Section by Solution of a Nonlinear Integral Eigenvalue Equation , 1972 .

[51]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[52]  Karen K. Uhlenbeck Eigenfunctions of Laplace operators , 1972 .

[53]  S. Durvasula,et al.  Natural Frequencies and Modes of Skew Membranes , 1968 .

[54]  M. Chi,et al.  Approximate Method of Determining the Cutoff Frequencies of Waveguides of Arbitrary Cross Section (Correspondence) , 1964 .

[55]  P. Laura,et al.  Determination of eigenvalues in a class of doubly connected regions in problems governed by Helmholtz's equation , 1978 .

[56]  E. Krahn,et al.  Über eine von Rayleigh formulierte Minimaleigenschaft des Kreises , 1925 .

[57]  J. Bladel,et al.  Square and Rectangular Waveguides with Rounded Corners , 1972 .

[58]  K. Nickel Extension of a Recent Paper by Fox, Henrici and Moler on Eigenvalues of Elliptic Operators , 1967 .

[59]  L. Rayleigh,et al.  The theory of sound , 1894 .

[60]  L. Payne Isoperimetric Inequalities and Their Applications , 1967 .

[61]  J. D. P. Donnelly,et al.  EIGENVALUES OF MEMBRANES WITH REENTRANT CORNERS , 1969 .

[62]  James T. Stadter,et al.  Bounds to Eigenvalues of Rhombical Membranes , 1966 .

[63]  Fook Loy Ng,et al.  Tabulation of Methods for the Numerical Solution of the Hollow Waveguide Problem (Short Papers) , 1974 .

[64]  P. Silvester,et al.  Numerical Modeling of Passive Microwave Devices , 1974 .

[65]  Werner C. Rheinboldt,et al.  Computational Methods for Determining Lower Bounds for Eigenvalues of Operators in Hilbert Spaces , 1966 .

[66]  Fundamental Frequency of a Star-Shaped Membrane , 1971 .