RADIOMETRIC CALIBRATION OF ALS INTENSITY

We have developed a new concept of empirical calibration scheme for airborne laser scanner (ALS) intensity by means of portable brightness calibration targets, which can be laid out in the flight target area. The accurate radiometric calibration of these targets is based on laboratory measurements with CCD-based laser backscatter instrument and terrestrial laser scanner reference measurements in laboratory and field conditions. We also discuss the extension of this method into the usage of commercially available industrial gravels or other (natural-type) targets available ad hoc. We demonstrate that airborne laser intensity calibration is feasible using this type of targets, but one must take carefully into account the physical parameters related to the experiment and the targets.

[1]  J. Hyyppä,et al.  Automatic detection of buildings from laser scanner data for map updating , 2003 .

[2]  H. Maas On the use of pulse reflectance data for laserscanner strip adjustment , 2001 .

[3]  M. Rautiainen,et al.  Hot spot reflectance signatures of common boreal lichens , 2005 .

[4]  Richard K. Moore,et al.  Radar remote sensing and surface scattering and emission theory , 1986 .

[5]  K. Mengersen,et al.  Airborne laser scanning: Exploratory data analysis indicates potential variables for classification of individual trees or forest stands according to species , 2005 .

[6]  W. Wagner,et al.  Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner , 2006 .

[7]  Juha Hyyppä,et al.  Brightness Measurements and Calibration With Airborne and Terrestrial Laser Scanners , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Antero Kukko,et al.  Effect of incidence angle on laser scanner intensity and surface data. , 2008, Applied optics.

[9]  Kiyun Yu,et al.  Assessing the Possibility of Landcover Classification Using Lidar Intensity Data , 2002 .

[10]  P. Sterzai,et al.  Radiometric correction in laser scanning , 2006 .

[11]  F. Rottensteiner,et al.  Classification of trees and powerlines from medium resolution airborne laserscanner data in urban environments , 2005 .

[12]  D. Donoghue,et al.  Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data , 2007 .

[13]  Juha Hyyppä,et al.  Study of surface brightness from backscattered laser intensity: calibration of laser data , 2005, IEEE Geoscience and Remote Sensing Letters.

[14]  G. Yoon,et al.  Coherent backscattering in biological media: measurement and estimation of optical properties. , 1993, Applied optics.

[15]  Juha Hyyppä,et al.  Toward Hyperspectral Lidar: Measurement of Spectral Backscatter Intensity With a Supercontinuum Laser Source , 2007, IEEE Geoscience and Remote Sensing Letters.

[16]  H. Maas,et al.  THE USE OF ANISOTROPIC HEIGHT TEXTURE MEASURES FOR THE SEGMENTATION OF AIRBORNE LASER SCANNER DATA , 2000 .

[17]  E. Schanda,et al.  Physical Fundamentals of Remote Sensing , 1986 .

[18]  K. Clint Slatton,et al.  Analysis of spatial and temporal stability of airborne laser swath mapping data in feature space , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[19]  Juha Hyyppä,et al.  Calibration of the optech ALTM-3100 laser scanner intensity data using brightness targets , 2006 .

[20]  H. Maas Methods for measuring height and planimetry discrepancies in airborne laserscanner data , 2002 .

[21]  Richard K. Moore,et al.  Microwave Remote Sensing , 1999 .