Data assimilation for phase-field models based on the ensemble Kalman filter

Abstract We have developed a data assimilation (DA) methodology based on the ensemble Kalman filter (EnKF) for estimating unknown parameters involved in a phase-field model from observational/experimental data. The DA methodology based on Bayesian statistics is able to estimate parameters by incorporating observational/experimental data into the phase-field model and evaluate the uncertainty of the estimated parameters. In this paper, we apply the EnKF-based DA method to estimate the phase-field mobility for a phase-field simulation of the isothermal austenite-to-ferrite transformation in a Fe–C–Mn alloy. Our DA method is validated through numerical experiments called “twin experiments” to verify that the DA method can estimate a priori assumed-true phase-field mobility from synthetic observational data. The results of the twin experiments using various initial phase-field mobilities show that our DA methodology can successfully estimate the true phase-field mobility, even when the initial value largely deviates from the true value. Furthermore, our DA method reveals the sampling interval for observational data necessary to accurately estimate the parameter and its uncertainty.

[1]  J. Cahn,et al.  A microscopic theory for antiphase boundary motion and its application to antiphase domain coasening , 1979 .

[2]  Akinori Yamanaka,et al.  Multi-phase-field simulations for dynamic recrystallization , 2009 .

[3]  A. Karma,et al.  Phase-Field Simulation of Solidification , 2002 .

[4]  Colin J. Cotter,et al.  Probabilistic Forecasting and Bayesian Data Assimilation , 2015 .

[5]  Craig H. Bishop,et al.  Adaptive sampling with the ensemble transform Kalman filter , 2001 .

[6]  Ursula R. Kattner,et al.  The thermodynamic modeling of multicomponent phase equilibria , 1997 .

[7]  Hemantha Kumar Yeddu,et al.  Three dimensional elasto-plastic phase field simulation of martensitic transformation in polycrystal , 2012 .

[8]  Hiroshi Kato,et al.  A data assimilation methodology for reconstructing turbulent flows around aircraft , 2015, J. Comput. Phys..

[9]  A. Dinsdale SGTE data for pure elements , 1991 .

[10]  Rolf Johan Lorentzen,et al.  Tuning of parameters in a two-phase flow model using an ensemble Kalman filter , 2003 .

[11]  Weiming Huang,et al.  An assessment of the Fe-Mn system , 1987 .

[12]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[13]  J. Whitaker,et al.  Ensemble Data Assimilation without Perturbed Observations , 2002 .

[14]  Wheeler,et al.  Phase-field model for isothermal phase transitions in binary alloys. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[15]  Peter Jan,et al.  Particle Filtering in Geophysical Systems , 2009 .

[16]  Akinori Yamanaka,et al.  Elastoplastic phase-field simulation of martensitic transformation with plastic deformation in polycrystal , 2010 .

[17]  Long-Qing Chen Phase-Field Models for Microstructure Evolution , 2002 .

[18]  T. Takaki,et al.  Two-dimensional phase-field simulations of dendrite competitive growth during the directional solidification of a binary alloy bicrystal , 2014 .

[19]  Markus Apel,et al.  The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: A multi-phase field study , 2006 .

[20]  Y. Ishikawa,et al.  Real data assimilation for optimization of frictional parameters and prediction of afterslip in the 2003 Tokachi-oki earthquake inferred from slip velocity by an adjoint method , 2015 .

[21]  Dong-Hee Yeon,et al.  A phase field study for ferrite–austenite transitions under para-equilibrium , 2001 .

[22]  Petar M. Djuric,et al.  Resampling Methods for Particle Filtering: Classification, implementation, and strategies , 2015, IEEE Signal Processing Magazine.

[23]  R. Kobayashi Modeling and numerical simulations of dendritic crystal growth , 1993 .

[24]  G. Evensen Sequential data assimilation with a nonlinear quasi‐geostrophic model using Monte Carlo methods to forecast error statistics , 1994 .

[25]  A. Stuart,et al.  Data Assimilation: A Mathematical Introduction , 2015, 1506.07825.

[26]  Tomoyuki Higuchi,et al.  Time-Series Modeling of Tide Gauge Records for Monitoring of the Crustal Activities Related to Oceanic Trench Earthquakes Around Japan , 2013, Comput. J..

[27]  J. Whitaker,et al.  Ensemble Square Root Filters , 2003, Statistical Methods for Climate Scientists.

[28]  Masaru Kunii,et al.  The 1000-Member Ensemble Kalman Filtering with the JMA Nonhydrostatic Mesoscale Model on the K Computer , 2014 .

[29]  Yosuke Fujii,et al.  Development of a Four-Dimensional Variational Assimilation System for Coastal Data Assimilation around Japan , 2015 .

[30]  Geir Evensen,et al.  The Ensemble Kalman Filter: theoretical formulation and practical implementation , 2003 .

[31]  Akinori Yamanaka,et al.  Data assimilation for massive autonomous systems based on a second-order adjoint method. , 2016, Physical review. E.

[32]  Istvan Szunyogh,et al.  Efficient data assimilation for spatiotemporal chaos: A local ensemble transform Kalman filter , 2005, physics/0511236.

[33]  Peter Jan van Leeuwen,et al.  Nonlinear Data Assimilation , 2015 .

[34]  P. Houtekamer,et al.  Data Assimilation Using an Ensemble Kalman Filter Technique , 1998 .

[35]  G. Evensen,et al.  Analysis Scheme in the Ensemble Kalman Filter , 1998 .

[36]  F. L. Dimet,et al.  Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects , 1986 .

[37]  Eiji Shima,et al.  A new adaptive estimation method of spacecraft thermal mathematical model with an ensemble Kalman filter , 2012 .

[38]  Hidehiro Onodera,et al.  Phase field simulation of grain growth in three dimensional system containing finely dispersed second-phase particles , 2006 .

[39]  Ashley A. White The Materials Genome Initiative: One year on , 2012 .

[40]  B. Nestler,et al.  Combined crystal plasticity and phase-field method for recrystallization in a process chain of sheet metal production , 2015 .

[41]  Bart Blanpain,et al.  A phase field model for the simulation of grain growth in materials containing finely dispersed incoherent second-phase particles , 2005 .

[42]  Soroosh Sorooshian,et al.  Dual state-parameter estimation of hydrological models using ensemble Kalman filter , 2005 .

[43]  M. Ohno,et al.  Quantitative phase-field modeling for dilute alloy solidification involving diffusion in the solid. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  J. E. Hilliard,et al.  Free Energy of a Nonuniform System. I. Interfacial Free Energy , 1958 .

[45]  R. Dronskowski,et al.  Thermodynamic assessment of the Mn–C system , 2010 .

[46]  Weiming Huang A thermodynamic assessment of the Fe-Mn-C system , 1990 .

[47]  J. M. Lewis,et al.  The use of adjoint equations to solve a variational adjustment problem with advective constraints , 1985 .

[48]  S. Zwaag,et al.  Three-dimensional phase field modelling of the austenite-to-ferrite transformation , 2006 .

[49]  Tomoyuki Higuchi,et al.  Application of the ensemble Kalman filter and smoother to a coupled atmosphere-ocean model , 2007 .

[50]  Ingo Steinbach,et al.  Phase-Field Model for Microstructure Evolution at the Mesoscopic Scale , 2013 .

[51]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..