Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking

Extremes play a special role in Anomaly Detection. Beyond inference and simulation purposes, probabilistic tools borrowed from Extreme Value Theory (EVT), such as the angular measure, can also be used to design novel statistical learning methods for Anomaly Detection/ranking. This paper proposes a new algorithm based on multivariate EVT to learn how to rank observations in a high dimensional space with respect to their degree of 'abnormality'. The procedure relies on an original dimension-reduction technique in the extreme domain that possibly produces a sparse representation of multivariate extremes and allows to gain insight into the dependence structure thereof, escaping the curse of dimensionality. The representation output by the unsupervised methodology we propose here can be combined with any Anomaly Detection technique tailored to non-extreme data. As it performs linearly with the dimension and almost linearly in the data (in O(dn log n)), it fits to large scale problems. The approach in this paper is novel in that EVT has never been used in its multivariate version in the field of Anomaly Detection. Illustrative experimental results provide strong empirical evidence of the relevance of our approach.

[1]  J. Hüsler,et al.  Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .

[2]  S. Resnick,et al.  Limit theory for multivariate sample extremes , 1977 .

[3]  Stephen J. Roberts,et al.  Extreme value statistics for novelty detection in biomedical signal processing , 2000 .

[4]  Zhi-Hua Zhou,et al.  Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[5]  David A. Clifton,et al.  Novelty Detection with Multivariate Extreme Value Statistics , 2011, J. Signal Process. Syst..

[6]  Ali A. Ghorbani,et al.  A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.

[7]  Graham J. Williams,et al.  On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.

[8]  J. Nolan,et al.  Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.

[9]  J. Segers,et al.  Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2008, 0812.3485.

[10]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[11]  Hyoungjoo Lee,et al.  On-line novelty detection using the Kalman filter and extreme value theory , 2008, 2008 19th International Conference on Pattern Recognition.

[12]  Salvatore J. Stolfo,et al.  A Geometric Framework for Unsupervised Anomaly Detection , 2002, Applications of Data Mining in Computer Security.

[13]  A. Stephenson HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .

[14]  Richard L. Smith Estimating tails of probability distributions , 1987 .

[15]  S. Roberts Novelty detection using extreme value statistics , 1999 .

[16]  Anne Sabourin,et al.  On Anomaly Ranking and Excess-Mass Curves , 2015, AISTATS.

[17]  Daniel Cooley,et al.  The pairwise beta distribution: A flexible parametric multivariate model for extremes , 2010, J. Multivar. Anal..

[18]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[19]  Jérémie Jakubowicz,et al.  Scoring anomalies: a M-estimation formulation , 2013, AISTATS.

[20]  A. Stephenson Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .

[21]  Lei Si Ni Ke Resnick.S.I. Extreme values. regular variation. and point processes , 2011 .

[22]  L. Tarassenko,et al.  Bayesian Extreme Value Statistics for Novelty Detection in Gas-Turbine Engines , 2008, 2008 IEEE Aerospace Conference.

[23]  Anne Sabourin,et al.  Learning the dependence structure of rare events: a non-asymptotic study , 2015, COLT.

[24]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[25]  S. Resnick Extreme Values, Regular Variation, and Point Processes , 1987 .

[26]  L. Haan,et al.  Nonparametric estimation of the spectral measure of an extreme value distribution , 2001 .

[27]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[28]  Holger Rootzén,et al.  Extreme Values in Finance, Telecommunications, and the Environment , 2003 .

[29]  A. SABOURIN,et al.  Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization , 2014, Comput. Stat. Data Anal..

[30]  S. Coles,et al.  Modelling Extreme Multivariate Events , 1991 .

[31]  J. Teugels,et al.  Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .

[32]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .