Sparse Representation of Multivariate Extremes with Applications to Anomaly Ranking
暂无分享,去创建一个
[1] J. Hüsler,et al. Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields , 2007 .
[2] S. Resnick,et al. Limit theory for multivariate sample extremes , 1977 .
[3] Stephen J. Roberts,et al. Extreme value statistics for novelty detection in biomedical signal processing , 2000 .
[4] Zhi-Hua Zhou,et al. Isolation Forest , 2008, 2008 Eighth IEEE International Conference on Data Mining.
[5] David A. Clifton,et al. Novelty Detection with Multivariate Extreme Value Statistics , 2011, J. Signal Process. Syst..
[6] Ali A. Ghorbani,et al. A detailed analysis of the KDD CUP 99 data set , 2009, 2009 IEEE Symposium on Computational Intelligence for Security and Defense Applications.
[7] Graham J. Williams,et al. On-Line Unsupervised Outlier Detection Using Finite Mixtures with Discounting Learning Algorithms , 2000, KDD '00.
[8] J. Nolan,et al. Models for Dependent Extremes Using Stable Mixtures , 2007, 0711.2345.
[9] J. Segers,et al. Maximum Empirical Likelihood Estimation of the Spectral Measure of an Extreme Value Distribution , 2008, 0812.3485.
[10] S. Coles,et al. An Introduction to Statistical Modeling of Extreme Values , 2001 .
[11] Hyoungjoo Lee,et al. On-line novelty detection using the Kalman filter and extreme value theory , 2008, 2008 19th International Conference on Pattern Recognition.
[12] Salvatore J. Stolfo,et al. A Geometric Framework for Unsupervised Anomaly Detection , 2002, Applications of Data Mining in Computer Security.
[13] A. Stephenson. HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .
[14] Richard L. Smith. Estimating tails of probability distributions , 1987 .
[15] S. Roberts. Novelty detection using extreme value statistics , 1999 .
[16] Anne Sabourin,et al. On Anomaly Ranking and Excess-Mass Curves , 2015, AISTATS.
[17] Daniel Cooley,et al. The pairwise beta distribution: A flexible parametric multivariate model for extremes , 2010, J. Multivar. Anal..
[18] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[19] Jérémie Jakubowicz,et al. Scoring anomalies: a M-estimation formulation , 2013, AISTATS.
[20] A. Stephenson. Simulating Multivariate Extreme Value Distributions of Logistic Type , 2003 .
[21] Lei Si Ni Ke Resnick.S.I.. Extreme values. regular variation. and point processes , 2011 .
[22] L. Tarassenko,et al. Bayesian Extreme Value Statistics for Novelty Detection in Gas-Turbine Engines , 2008, 2008 IEEE Aerospace Conference.
[23] Anne Sabourin,et al. Learning the dependence structure of rare events: a non-asymptotic study , 2015, COLT.
[24] J. Teugels,et al. Statistics of Extremes , 2004 .
[25] S. Resnick. Extreme Values, Regular Variation, and Point Processes , 1987 .
[26] L. Haan,et al. Nonparametric estimation of the spectral measure of an extreme value distribution , 2001 .
[27] J. Tawn. Modelling multivariate extreme value distributions , 1990 .
[28] Holger Rootzén,et al. Extreme Values in Finance, Telecommunications, and the Environment , 2003 .
[29] A. SABOURIN,et al. Bayesian Dirichlet mixture model for multivariate extremes: A re-parametrization , 2014, Comput. Stat. Data Anal..
[30] S. Coles,et al. Modelling Extreme Multivariate Events , 1991 .
[31] J. Teugels,et al. Tail Index Estimation, Pareto Quantile Plots, and Regression Diagnostics , 1996 .
[32] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .