Collective Nominal Semantic Role Labeling for Tweets

Tweets have become an increasingly popular source of fresh information. We investigate the task of Nominal Semantic Role Labeling (NSRL) for tweets, which aims to identify predicate-argument structures defined by nominals in tweets. Studies of this task can help fine-grained information extraction and retrieval from tweets. There are two main challenges in this task: 1) The lack of information in a single tweet, rooted in the short and noisy nature of tweets; and 2) recovery of implicit arguments. We propose jointly conducting NSRL on multiple similar tweets using a graphical model, leveraging the redundancy in tweets to tackle these challenges. Extensive evaluations on a human annotated data set demonstrate that our method outperforms two baselines with an absolute gain of 2.7% in F1.

[1]  Martha Palmer,et al.  PropBank: the Next Level of TreeBank , 2003 .

[2]  Ming Zhou,et al.  Enhancing Semantic Role Labeling for Tweets Using Self-Training , 2011, AAAI.

[3]  Ming Zhou,et al.  Collective Semantic Role Labeling for Tweets with Clustering , 2011, IJCAI.

[4]  Michael I. Jordan,et al.  Loopy Belief Propagation for Approximate Inference: An Empirical Study , 1999, UAI.

[5]  Dan Roth,et al.  Generalized Inference with Multiple Semantic Role Labeling Systems , 2005, CoNLL.

[6]  Gabriele Musillo,et al.  Accurate Parsing of the Proposition Bank , 2006, HLT-NAACL.

[7]  Daniel Jurafsky,et al.  Automatic Labeling of Semantic Roles , 2002, CL.

[8]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[9]  K. Fernow New York , 1896, American Potato Journal.

[10]  Lluís Màrquez i Villodre,et al.  Semantic Role Labeling as Sequential Tagging , 2005, CoNLL.

[11]  Dan Roth,et al.  The Importance of Syntactic Parsing and Inference in Semantic Role Labeling , 2008, CL.

[12]  Xavier Carreras,et al.  Introduction to the CoNLL-2005 Shared Task: Semantic Role Labeling , 2005, CoNLL.

[13]  Christopher D. Manning,et al.  Joint Learning Improves Semantic Role Labeling , 2005, ACL.

[14]  Hwee Tou Ng,et al.  Semantic Role Labeling of NomBank: A Maximum Entropy Approach , 2006, EMNLP.

[15]  Joyce Yue Chai,et al.  Beyond NomBank: A Study of Implicit Arguments for Nominal Predicates , 2010, ACL.

[16]  Richard Johansson,et al.  The CoNLL 2008 Shared Task on Joint Parsing of Syntactic and Semantic Dependencies , 2008, CoNLL.

[17]  Matthew Richardson,et al.  Markov logic networks , 2006, Machine Learning.

[18]  Hai Zhao,et al.  Improving Nominal SRL in Chinese Language with Verbal SRL Information and Automatic Predicate Recognition , 2009, EMNLP.

[19]  Joyce Yue Chai,et al.  The Role of Implicit Argumentation in Nominal SRL , 2009, HLT-NAACL.

[20]  Daphne Koller,et al.  Applying Sentence Simplification to the CoNLL-2008 Shared Task , 2008, CoNLL.

[21]  Gabriele Musillo,et al.  Semantic Parsing for High-Precision Semantic Role Labelling , 2008, CoNLL.

[22]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[23]  Nianwen Xue,et al.  Calibrating Features for Semantic Role Labeling , 2004, EMNLP.

[24]  Changning Huang,et al.  Semantic Role Labeling for News Tweets , 2010, COLING.

[25]  Hosung Park,et al.  What is Twitter, a social network or a news media? , 2010, WWW '10.

[26]  Christopher D. Manning,et al.  A Global Joint Model for Semantic Role Labeling , 2008, CL.

[27]  Oren Etzioni,et al.  Named Entity Recognition in Tweets: An Experimental Study , 2011, EMNLP.

[28]  Ming Zhou,et al.  Recognizing Named Entities in Tweets , 2011, ACL.

[29]  Joyce Yue Chai,et al.  A Joint Model of Implicit Arguments for Nominal Predicates , 2011, RELMS@ACL.

[30]  Dan Roth,et al.  A Joint Model for Extended Semantic Role Labeling , 2011, EMNLP.

[31]  Iván V. Meza,et al.  Jointly Identifying Predicates, Arguments and Senses using Markov Logic , 2009, NAACL.

[32]  Phil Blunsom,et al.  Semantic Role Labelling with Tree Conditional Random Fields , 2005, CoNLL.