Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study
暂无分享,去创建一个
M. Ivette Gomes | Lígia Henriques-Rodrigues | M. Cristina Miranda | M. Gomes | L. Henriques-Rodrigues | M. Miranda
[1] Christine M. Anderson-Cook,et al. Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.
[2] M. J. Martins,et al. “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .
[3] M. Gomes,et al. Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .
[4] M. Ivette Gomes,et al. Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .
[5] M. Ivette Gomes,et al. PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..
[6] Fernanda Figueiredo,et al. Improved reduced-bias tail index and quantile estimators , 2008 .
[7] M. Ivette Gomes,et al. A new class of semi-parametric estimators of the second order parameter. , 2003 .
[8] J. Beirlant,et al. On univariate extreme value statistics and the estimation of reinsurance premiums , 2006 .
[9] B. M. Hill,et al. A Simple General Approach to Inference About the Tail of a Distribution , 1975 .
[10] M. Ivette Gomes,et al. Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .
[11] M. C. Jones,et al. A skew extension of the t‐distribution, with applications , 2003 .
[12] Frederico Caeiro,et al. A new class of estimators of a “scale” second order parameter , 2007 .
[13] M. Ivette Gomes,et al. The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .
[14] M. Gomes,et al. A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation , 2012 .
[15] Holger Drees,et al. Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Preprint Extreme Quantile Estimation for Dependent Data with Applications to Finance Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Extreme Quantile Estimation for Dependent Data with Applications to Finance , 2022 .
[16] Cécile Mercadier,et al. Semi-parametric estimation for heavy tailed distributions , 2010 .
[17] M. Gomes,et al. Tail index and second-order parameters’ semi-parametric estimation based on the log-excesses , 2010 .
[18] J. Teugels,et al. Statistics of Extremes , 2004 .
[19] P. Hall. On Some Simple Estimates of an Exponent of Regular Variation , 1982 .
[20] M. Ivette Gomes,et al. DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .
[21] Jan Beirlant,et al. LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .
[22] D. Pestana,et al. A simple second-order reduced bias’ tail index estimator , 2007 .
[23] M. Ivette Gomes,et al. Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .
[24] Jan Beirlant,et al. Kernel estimators for the second order parameter in extreme value statistics , 2010 .
[25] Liang Peng,et al. Comparison of tail index estimators , 1998 .
[26] E. Gumbel,et al. Statistics of extremes , 1960 .