Reduced-Bias Location-Invariant Extreme Value Index Estimation: A Simulation Study

In this article, we deal with semi-parametric corrected-bias estimation of a positive extreme value index (EVI), the primary parameter in statistics of extremes. Under such a context, the classical EVI-estimators are the Hill estimators, based on any intermediate number k of top-order statistics. But these EVI-estimators are not location-invariant, contrarily to the PORT-Hill estimators, which depend on an extra tuning parameter q, with 0 ≤ q < 1, and where PORT stands for peaks over random threshold. On the basis of second-order minimum-variance reduced-bias (MVRB) EVI-estimators, we shall here consider PORT-MVRB EVI-estimators. Due to the stability on k of the MVRB EVI-estimates, we propose the use of a heuristic algorithm, for the adaptive choice of k and q, based on the bias pattern of the estimators as a function of k. Applications in the fields of insurance and finance will be provided.

[1]  Christine M. Anderson-Cook,et al.  Book review: quantitative risk management: concepts, techniques and tools, revised edition, by A.F. McNeil, R. Frey and P. Embrechts. Princeton University Press, 2015, ISBN 978-0-691-16627-8, xix + 700 pp. , 2017, Extremes.

[2]  M. J. Martins,et al.  “Asymptotically Unbiased” Estimators of the Tail Index Based on External Estimation of the Second Order Parameter , 2002 .

[3]  M. Gomes,et al.  Asymptotically best linear unbiased tail estimators under a second-order regular variation condition , 2005 .

[4]  M. Ivette Gomes,et al.  Tail index estimation for heavy‐tailed models: accommodation of bias in weighted log‐excesses , 2007 .

[5]  M. Ivette Gomes,et al.  PORT Hill and Moment Estimators for Heavy-Tailed Models , 2008, Commun. Stat. Simul. Comput..

[6]  Fernanda Figueiredo,et al.  Improved reduced-bias tail index and quantile estimators , 2008 .

[7]  M. Ivette Gomes,et al.  A new class of semi-parametric estimators of the second order parameter. , 2003 .

[8]  J. Beirlant,et al.  On univariate extreme value statistics and the estimation of reinsurance premiums , 2006 .

[9]  B. M. Hill,et al.  A Simple General Approach to Inference About the Tail of a Distribution , 1975 .

[10]  M. Ivette Gomes,et al.  Peaks over random threshold methodology for tail index and high quantile estimation , 2006 .

[11]  M. C. Jones,et al.  A skew extension of the t‐distribution, with applications , 2003 .

[12]  Frederico Caeiro,et al.  A new class of estimators of a “scale” second order parameter , 2007 .

[13]  M. Ivette Gomes,et al.  The Bootstrap Methodology in Statistics of Extremes—Choice of the Optimal Sample Fraction , 2001 .

[14]  M. Gomes,et al.  A computational study of a quasi-PORT methodology for VaR based on second-order reduced-bias estimation , 2012 .

[15]  Holger Drees,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Preprint Extreme Quantile Estimation for Dependent Data with Applications to Finance Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Extreme Quantile Estimation for Dependent Data with Applications to Finance , 2022 .

[16]  Cécile Mercadier,et al.  Semi-parametric estimation for heavy tailed distributions , 2010 .

[17]  M. Gomes,et al.  Tail index and second-order parameters’ semi-parametric estimation based on the log-excesses , 2010 .

[18]  J. Teugels,et al.  Statistics of Extremes , 2004 .

[19]  P. Hall On Some Simple Estimates of an Exponent of Regular Variation , 1982 .

[20]  M. Ivette Gomes,et al.  DIRECT REDUCTION OF BIAS OF THE CLASSI- CAL HILL ESTIMATOR ⁄ , 2005 .

[21]  Jan Beirlant,et al.  LINKING PARETO-TAIL KERNEL GOODNESS-OF-FIT STATISTICS WITH TAIL INDEX AT OPTIMAL THRESHOLD AND SECOND ORDER ESTIMATION , 2008 .

[22]  D. Pestana,et al.  A simple second-order reduced bias’ tail index estimator , 2007 .

[23]  M. Ivette Gomes,et al.  Reduced-Bias Tail Index Estimators Under a Third-Order Framework , 2009 .

[24]  Jan Beirlant,et al.  Kernel estimators for the second order parameter in extreme value statistics , 2010 .

[25]  Liang Peng,et al.  Comparison of tail index estimators , 1998 .

[26]  E. Gumbel,et al.  Statistics of extremes , 1960 .