Probing of local structures of thermal and photoinduced phases in rubidium manganese hexacyanoferrate by resonant Raman spectroscopy.

Resonant couplings of the electronic states and the stretching vibrations of CN(-) ligands, which bridges metal ions, is investigated by resonance Raman spectroscopy for Rb(0.94)Mn[Fe(CN)6](0.98)·0.2H2O. Large excitation wavelength dependences over one order of magnitude were found for Raman peaks corresponding to different valence pairs of metal ions in the excitation wavelength range between 350 and 632 nm. In the thermal low-temperature phase, the CN(-) stretching modes due to the low-temperature-phase configuration (Fe(2+)-Mn(3+)) and the phase-boundary configuration (Fe(3+)-Mn(3+)) are coupled to the Fe(2+)-to-Mn(3+) intervalence transfer band and Jahn-Teller distorted Mn(3+) d-d transition band, respectively. In the photoinduced low-temperature phase, the Fe(3+)-Mn(3+) mode shows strong resonant enhancement with the CN(-)-to-Fe(3+) charge-transfer band, which exists in the high-temperature phase with a cubic structure. From these resonance behaviors, we conclude that the local lattice symmetry of the photoinduced phase is cubic in contrast with the tetragonal symmetry in the thermal low-temperature phase.

[1]  M. Nakajima,et al.  Growth Dynamics of Photoinduced Phase Domain in Cyano-Complex Studied by Boundary Sensitive Raman Spectroscopy , 2012 .

[2]  M. Nakajima,et al.  Photo‐induced phase switching dynamics in RbMn[Fe(CN)6] probed by accumulation free mid‐infrared spectroscopy , 2011 .

[3]  Masao Nakamura,et al.  Transient photoinduced 'hidden' phase in a manganite. , 2011, Nature materials.

[4]  T. Suemoto,et al.  Effect of lattice deformation on photoinduced phase transition process in RbMn[Fe(CN)6] , 2011 .

[5]  M. Nakajima,et al.  Dynamics of the charge transferred states relevant to magnetic phase transition in rubidium manganese hexacyanoferrate , 2009 .

[6]  M. Nakajima,et al.  Photoinduced charge-transfer process in rubidium manganese hexacyanoferrate probed by Raman spectroscopy. , 2009, The Journal of chemical physics.

[7]  G. Molnár,et al.  Valence-Tautomeric RbMnFe Prussian Blue Analogues: Composition and Time Stability Investigation , 2009 .

[8]  M. Knupfer,et al.  Bulk and surface switching in Mn-Fe-based Prussian blue analogues , 2008, 0810.0175.

[9]  P. Dahoo,et al.  Spectroscopic ellipsometry investigations of the thermally induced first-order transition of Rbmn[Fe(CN)6] , 2008 .

[10]  S. Ohkoshi,et al.  Phase collapse caused by blue-light irradiation in a cyanobridged coordination polymer , 2008 .

[11]  G. Molnár,et al.  Light- and Temperature-Induced Electron Transfer in Single Crystals of RbMn[Fe(CN)6]·H2O , 2008 .

[12]  K. Hashimoto,et al.  Coexistence of ferroelectricity and ferromagnetism in a rubidium manganese hexacyanoferrate. , 2007, Angewandte Chemie.

[13]  G. Molnár,et al.  Correlation between the Stoichiometry and the Bistability of Electronic States in Valence‐Tautomeric RbxMn[Fe(CN)6]y·zH2O Complexes , 2007 .

[14]  K. Dunbar,et al.  Chemistry of Transition Metal Cyanide Compounds: Modern Perspectives , 2007 .

[15]  K. Hashimoto,et al.  Photo-induced charge-transfer phase transition of rubidium manganese hexacyanoferrate in ferromagnetic and paramagnetic states , 2007 .

[16]  S. Miyashita,et al.  Huge thermal hysteresis loop and a hidden stable phase in a charge-transfer phase transition ofRb0.64Mn[Fe(CN)6]0.88∙1.7H2O , 2006 .

[17]  S. Margadonna,et al.  Pressure-induced sequential magnetic pole inversion and antiferromagnetic-ferromagnetic crossover in a trimetallic prussian blue analogue. , 2006, Journal of the American Chemical Society.

[18]  K. Hashimoto,et al.  Photoinduced magnetization in copper octacyanomolybdate. , 2006, Journal of the American Chemical Society.

[19]  K. Hashimoto,et al.  The dielectric constant in a thermal phase transition magnetic material composed of rubidium manganese hexacyanoferrate observed by spectroscopic ellipsometry , 2005 .

[20]  K. Hashimoto,et al.  Nonlinear magnetooptical effects caused by piezoelectric ferromagnetism in F3m-type Prussian blue analogues. , 2005, Journal of the American Chemical Society.

[21]  A. Musumeci,et al.  Intercalation of hydrotalcites with hexacyanoferrate(II) and (III)—a thermoRaman spectroscopic study , 2005 .

[22]  S. Miyashita,et al.  Unified theoretical description of the thermodynamical properties of spin crossover with magnetic interactions , 2005, cond-mat/0505701.

[23]  A. Dei Photomagnetic effects in polycyanometallate compounds: an intriguing future chemically based technology? , 2005, Angewandte Chemie.

[24]  S. Margadonna,et al.  Large lattice responses in a mixed-valence Prussian blue analogue owing to electronic and spin transitions induced by X-ray irradiation. , 2004, Angewandte Chemie.

[25]  K. Nasu Photoinduced Phase Transitions , 2004 .

[26]  K. Hashimoto,et al.  A large thermal hysteresis loop produced by a charge-transfer phase transition in a rubidium manganese hexacyanoferrate. , 2004, Inorganic chemistry.

[27]  K. Rajeshwar,et al.  Metal Hexacyanoferrates: Electrosynthesis, in Situ Characterization, and Applications , 2003 .

[28]  K. Hashimoto,et al.  One-shot-laser-pulse-induced demagnetization in rubidium manganese hexacyanoferrate , 2003 .

[29]  N. Hamada,et al.  Ferromagnetic Spin-Ordering in Photo-active RbMn[Fe(CN)6] , 2003 .

[30]  K. Rajeshwar,et al.  Cobalt hexacyanoferrate: Compound stoichiometry, infrared spectroelectrochemistry, and photoinduced electron transfer , 2002 .

[31]  K. Hashimoto,et al.  Observation of spin transition in an octahedrally coordinated manganese(II) compound , 2002 .

[32]  A. Epstein,et al.  Photoinduced magnetization in the organic-based magnet Mn(TCNE)(x)* y(CH2Cl2). , 2002, Physical review letters.

[33]  K. Tanaka,et al.  Photoinduced phase transition to a new macroscopic spin-crossover-complex phase. , 2001, Physical review letters.

[34]  F. Varret,et al.  Photoinduced Ferrimagnetic Systems in Prussian Blue Analogues CIxCo4[Fe(CN)6]y (CI = Alkali Cation). 1. Conditions to Observe the Phenomenon , 2000 .

[35]  M. Verdaguer,et al.  Room-temperature molecule-based magnets , 1999, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  V. Marvaud,et al.  MOLECULES TO BUILD SOLIDS : HIGH TC MOLECULE-BASED MAGNETS BY DESIGN AND RECENT REVIVAL OF CYANO COMPLEXES CHEMISTRY , 1999 .

[37]  A. Fujishima,et al.  Photoinduced Magnetization of a Cobalt-Iron Cyanide , 1996, Science.

[38]  Philipp Gütlich,et al.  Thermal and Optical Switching of Iron(II) Complexes , 1994 .

[39]  A. Bocarsly,et al.  Reaction of Nickel Electrode Surfaces with Anionic Metal-Cyanide Complexes: Formation of Precipitated Surfaces , 1984 .

[40]  R. Hester,et al.  Resonance-Raman and infrared studies of cyanide-bridged dimetal complexes , 1981 .

[41]  S. Ghosh Infrared spectra of the Prussian blue analogs , 1974 .

[42]  Jerry B. Ayers,et al.  Synthesis and properties of two series of heavy metal hexacyanoferrates , 1971 .

[43]  A. B. Ritchie,et al.  Faraday Effect of Charge‐Transfer Transitions in Fe(CN)63−, MnO4−, and CrO42− , 1966 .

[44]  P. Stephens The Faraday Rotation of Allowed Transitions: Charge-Transfer Transitions in K3Fe(CN)6 , 1965 .

[45]  C. Naiman Interpretation of the Absorption Spectra of K3Fe(CN)6 , 1961 .

[46]  M. El-Sayed,et al.  The position of the CN stretching frequency in organic and inorganic molecules , 1958 .

[47]  A. Pugžlys,et al.  The Influence of Defects on the Electron-Transfer and Magnetic Properties of , 2018 .

[48]  Y. Moritomo,et al.  Visible-Light-Induced Reversible Photomagnetism in Rubidium Manganese Hexacyanoferrate , 2008 .

[49]  J. Bertrán,et al.  The CN stretch of hexacyanometallates as a sensor of ligand—outer cation interactions—I. Ferricyanides and cobalticyanides , 1990 .