Elastic Properties of Model Porous Ceramics

The finite-element method (FEM) is used to study the influence of porosity and pore shape on the elastic properties of model porous ceramics. Young's modulus of each model is practically independent of the solid Poisson's ratio. At a sufficiently high porosity, Poisson's ratio of the porous models converges to a fixed value independent of the solid Poisson's ratio. Young's modulus of the models is in good agreement with experimental data. We provide simple formulas that can be used to predict the elastic properties of ceramics and allow the accurate interpretation of empirical property-porosity relations in terms of pore shape and structure.

[1]  S. Baxter,et al.  Influence of pore geometry on the effective response of porous media , 1999 .

[2]  E. Garboczi,et al.  Elastic properties of a tungsten–silver composite by reconstruction and computation , 1999, cond-mat/9901320.

[3]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media : II. Applications to isotropic dispersions , 1998 .

[4]  Salvatore Torquato,et al.  Effective stiffness tensor of composite media—I. Exact series expansions , 1997 .

[5]  Pierre M. Adler,et al.  The effective mechanical properties of random porous media , 1996 .

[6]  R. Rice Comparison of physical property-porosity behaviour with minimum solid area models , 1996, Journal of Materials Science.

[7]  Edward J. Garboczi,et al.  An algorithm for computing the effective linear elastic properties of heterogeneous materials: Three-dimensional results for composites with equal phase poisson ratios , 1995 .

[8]  Snyder,et al.  Geometrical percolation threshold of overlapping ellipsoids. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[9]  R. Rice Comment on “Effective Elastic Moduli of Porous Ceramic Materials” , 1995 .

[10]  Teubner,et al.  Transport properties of heterogeneous materials derived from Gaussian random fields: Bounds and simulation. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  A. Boccaccini Comment on “Effective Elastic Moduli of Porous Ceramic Materials” , 1994 .

[12]  N. Ramakrishnan,et al.  Effective Elastic Moduli of Porous Ceramic Materials , 1993 .

[13]  Graeme W. Milton,et al.  Invariant properties of the stress in plane elasticity and equivalence classes of composites , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[14]  E. Garboczi,et al.  The elastic moduli of a sheet containing circular holes , 1992 .

[15]  J. Aboudi Mechanics of composite materials - A unified micromechanical approach , 1991 .

[16]  Salvatore Torquato,et al.  Random Heterogeneous Media: Microstructure and Improved Bounds on Effective Properties , 1991 .

[17]  N. Ramakrishnan,et al.  Effective elastic moduli of porous solids , 1990 .

[18]  Z. Hashin Analysis of Composite Materials—A Survey , 1983 .

[19]  Jorge López,et al.  Empirical Dependence of Elastic Moduli on Porosity for Ceramic Materials , 1983 .

[20]  James G. Berryman,et al.  Long‐wavelength propagation in composite elastic media II. Ellipsoidal inclusions , 1980 .

[21]  S. L. Dole,et al.  Elastic Properties of Stabilized HfO2 Compositions , 1980 .

[22]  R. Christensen,et al.  Solutions for effective shear properties in three phase sphere and cylinder models , 1979 .

[23]  J. S. Reed,et al.  Elastic Moduli of Refractory Spinels , 1977 .

[24]  O. Hunter,et al.  ELASTIC PROPERTIES OF POLYCRYSTALLINE MONOCLINIC GD2O3 , 1973 .

[25]  R. R. Suchomel,et al.  Elastic Properties of Polycrystalline Monoclinic Sm2O3 , 1973 .

[26]  J. A. Haglung,et al.  Elastic properties of polycrystalline monoclinic Gd$sub 2$O$sub 3$ , 1973 .

[27]  A. W. England,et al.  Effect of Porosity on Compressibility of Glass , 1965 .

[28]  B. Budiansky On the elastic moduli of some heterogeneous materials , 1965 .

[29]  R. Hill A self-consistent mechanics of composite materials , 1965 .

[30]  Harold L. Weissberg,et al.  Effective Diffusion Coefficient in Porous Media , 1963 .

[31]  Zvi Hashin,et al.  The Elastic Moduli of Heterogeneous Materials , 1962 .

[32]  F. P. Knudsen Effect of Porosity on Young's Modulus of Alumina , 1962 .

[33]  F. P. Knudsen Dependence of Mechanical Strength of Brittle Polycrystalline Specimens on Porosity and Grain Size , 1959 .

[34]  Robert L. Coble,et al.  Effect of Porosity on Physical Properties of Sintered Alumina , 1956 .

[35]  R. Rice Evaluation and extension of physical property-porosity models based on minimum solid area , 1996 .

[36]  S. Oswald,et al.  Phase transformations of δAl2O3 (Saffil) fibres during their interaction with molten MgLi alloys , 1996, Journal of Materials Science.

[37]  Aboundi,et al.  Book Reviews : Mechanics of Composite Materials: R.M. Jones McGraw-Hill Book Co., New York, 1975 , 1980 .

[38]  R. Mclaughlin A study of the differential scheme for composite materials , 1977 .

[39]  O. Hunter,et al.  Porosity Dependence of Elastic Properties of Poly-crystalline Cubic Lu2O3 , 1976 .

[40]  Tai Te Wu,et al.  The effect of inclusion shape on the elastic moduli of a two-phase material* , 1966 .

[41]  J. Mackenzie,et al.  The Elastic Constants of a Solid containing Spherical Holes , 1950 .