Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part I: Calculation of SW Flux from Observed Cloud Properties*

AbstractThe sensitivity of the reflection of shortwave radiation over the Southern Ocean to the cloud properties there is estimated using observations from a suite of passive and active satellite instruments in combination with radiative transfer modeling. A composite cloud property observational data description is constructed that consistently incorporates mean cloud liquid water content, ice water content, liquid and ice particle radius information, vertical structure, vertical overlap, and spatial aggregation of cloud water as measured by optical depth versus cloud-top pressure histograms. The observational datasets used are Moderate Resolution Imaging Spectroradiometer (MODIS) effective radius filtered to mitigate solar zenith angle bias, the Multiangle Imaging Spectroradiometer (MISR) cloud-top height–optical depth (CTH–OD) histogram, the liquid water path from the University of Wisconsin dataset, and ice cloud properties from CloudSat. This cloud database is used to compute reflected shortwave radi...

[1]  D. Hartmann,et al.  Observed Southern Ocean Cloud Properties and Shortwave Reflection. Part II: Phase Changes and Low Cloud Feedback* , 2014 .

[2]  Robert Wood,et al.  The effect of solar zenith angle on MODIS cloud optical and microphysical retrievals within marine liquid water clouds , 2014 .

[3]  C. Bretherton,et al.  Marine boundary layer cloud regimes and POC formation in a CRM coupled to a bulk aerosol scheme , 2013 .

[4]  Zhibo Zhang On the sensitivity of cloud effective radius retrieval based on spectral method to bi-modal droplet size distribution: A semi-analytical model , 2013 .

[5]  J. Jensen,et al.  In situ observations of supercooled liquid clouds over the Southern Ocean during the HIAPER Pole‐to‐Pole Observation campaigns , 2013 .

[6]  P. Minnis,et al.  The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals , 2013 .

[7]  Steven Platnick,et al.  Vertical Photon Transport in Cloud Remote Sensing Problems , 2013 .

[8]  S. Klein,et al.  CMIP3 Subtropical Stratocumulus Cloud Feedback Interpreted through a Mixed-Layer Model , 2013 .

[9]  M. Gallagher,et al.  In-situ aircraft observations of ice concentrations within clouds over the Antarctic Peninsula and Larsen Ice Shelf , 2012 .

[10]  K. Taylor,et al.  Contributions of Different Cloud Types to Feedbacks and Rapid Adjustments in CMIP5 , 2012 .

[11]  Steven Platnick,et al.  Effects of Cloud Horizontal Inhomogeneity and Drizzle on Remote Sensing of Cloud Droplet Effective Radius: Case Studies Based on Large-eddy Simulations , 2012 .

[12]  K. Bower,et al.  Evaluating MODIS cloud retrievals with in situ observations from VOCALS-REx , 2012 .

[13]  G. Vaughan,et al.  Using passive remote sensing to retrieve the vertical variation of cloud droplet size in marine stratocumulus: An assessment of information content and the potential for improved retrievals from hyperspectral measurements , 2012 .

[14]  V. Thouret,et al.  Distribution, variability and sources of tropospheric ozone over south China in spring: Intensive ozonesonde measurements at five locations and modeling analysis , 2012 .

[15]  Mark D. Zelinka,et al.  Computing and Partitioning Cloud Feedbacks Using Cloud Property Histograms. Part II: Attribution to Changes in Cloud Amount, Altitude, and Optical Depth , 2012 .

[16]  J. Haynes,et al.  The Structure of Low-Altitude Clouds over the Southern Ocean as Seen by CloudSat , 2012 .

[17]  Nicole Van Lipzig,et al.  Tropospheric clouds in Antarctica , 2012 .

[18]  M. Shupe,et al.  Resilience of persistent Arctic mixed-phase clouds , 2012 .

[19]  Paquita Zuidema,et al.  Assessment of MODIS cloud effective radius and optical thickness retrievals over the Southeast Pacific with VOCALS‐REx in situ measurements , 2011 .

[20]  Kathryn L. Verlinden,et al.  The three-dimensional distribution of clouds over the Southern Hemisphere high latitudes. , 2011 .

[21]  M. Shupe,et al.  Moisture and dynamical interactions maintaining decoupled Arctic mixed-phase stratocumulus in the presence of a humidity inversion , 2011 .

[22]  William B. Rossow,et al.  Major Characteristics of Southern Ocean Cloud Regimes and Their Effects on the Energy Budget , 2011 .

[23]  R. Hogan,et al.  A Comparison among Four Different Retrieval Methods for Ice-Cloud Properties Using Data from CloudSat, CALIPSO, and MODIS , 2011 .

[24]  Steven Platnick,et al.  An assessment of differences between cloud effective particle radius retrievals for marine water clouds from three MODIS spectral bands , 2011 .

[25]  O. Krüger,et al.  Southern Ocean phytoplankton increases cloud albedo and reduces precipitation , 2011 .

[26]  Zhonghai Jin,et al.  A new parameterization of spectral and broadband ocean surface albedo. , 2011, Optics express.

[27]  T. Zinner,et al.  Testing remote sensing on artificial observations: impact of drizzle and 3-D cloud structure on effective radius retrievals , 2010 .

[28]  R. Marchand,et al.  A review of cloud top height and optical depth histograms from MISR, ISCCP, and MODIS , 2010 .

[29]  T. Lenton,et al.  Quantification of DMS aerosol-cloud-climate interactions using the ECHAM5-HAMMOZ model in a current climate scenario , 2010 .

[30]  G. Mace,et al.  Tropical composition, cloud and climate coupling experiment validation for cirrus cloud profiling retrieval using cloudsat radar and CALIPSO lidar , 2010 .

[31]  S. Bony,et al.  The GCM‐Oriented CALIPSO Cloud Product (CALIPSO‐GOCCP) , 2010 .

[32]  T. Lenton,et al.  Quantification of DMS aerosol-cloud-climate interactions using ECHAM 5-HAMMOZ model in current climate scenario , 2010 .

[33]  Andrew Gettelman,et al.  Cloud influence on and response to seasonal Arctic sea ice loss , 2009 .

[34]  J. Hallett,et al.  Ice and water content of stratiform mixed‐phase cloud , 2009 .

[35]  Steven A. Ackerman,et al.  Vertical distributions and relationships of cloud occurrence frequency as observed by MISR, AIRS, MODIS, OMI, CALIPSO, and CloudSat , 2009 .

[36]  R. Marchand,et al.  A description of hydrometeor layer occurrence statistics derived from the first year of merged Cloudsat and CALIPSO data , 2009 .

[37]  David R. Doelling,et al.  Toward Optimal Closure of the Earth's Top-of-Atmosphere Radiation Budget , 2009 .

[38]  G. Mann,et al.  Influence of oceanic dimethyl sulfide emissions on cloud condensation nuclei concentrations and seasonality over the remote Southern Hemisphere oceans: A global model study , 2008 .

[39]  Robert Wood,et al.  Studying the vertical variation of cloud droplet effective radius using ship and space-borne remote sensing data , 2008 .

[40]  Christopher W. O'Dell,et al.  Cloud Liquid Water Path from Satellite-Based Passive Microwave Observations: A New Climatology over the Global Oceans , 2008 .

[41]  R. Hogan,et al.  Testing IWC Retrieval Methods Using Radar and Ancillary Measurements with In Situ Data , 2008 .

[42]  Thomas P. Ackerman,et al.  An assessment of Multiangle Imaging Spectroradiometer (MISR) stereo‐derived cloud top heights and cloud top winds using ground‐based radar, lidar, and microwave radiometers , 2007 .

[43]  A. Evan,et al.  Arguments against a physical long‐term trend in global ISCCP cloud amounts , 2007 .

[44]  Ralf Bennartz,et al.  Global assessment of marine boundary layer cloud droplet number concentration from satellite , 2007 .

[45]  Roger Davies,et al.  Comparison of Microwave and Optical Cloud Water Path Estimates From TMI, MODIS, and MISR , 2007 .

[46]  C. Bretherton,et al.  On the Relationship between Stratiform Low Cloud Cover and Lower-Tropospheric Stability , 2006 .

[47]  Patrick Minnis,et al.  Determination of ice water path in ice‐over‐water cloud systems using combined MODIS and AMSR‐E measurements , 2006 .

[48]  S. Bony,et al.  How Well Do We Understand and Evaluate Climate Change Feedback Processes , 2006 .

[49]  R. Wood,et al.  Spatial variability of liquid water path in marine low cloud : The importance of mesoscale cellular convection , 2006 .

[50]  S. Gassó,et al.  What controls CCN seasonality in the Southern Ocean? A statistical analysis based on satellite‐derived chlorophyll and CCN and model‐estimated OH radical and rainfall , 2006 .

[51]  Marie Doutriaux-Boucher,et al.  A comparison of cloud droplet radii measured from space , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[52]  Bryan A. Baum,et al.  Ice Water Path-Optical Depth Relationships for Cirrus and Deep Stratiform Ice Cloud Layers. , 2003 .

[53]  N. Loeb,et al.  Twilight Irradiance Reflected by the Earth Estimated from Clouds and the Earth's Radiant Energy System (CERES) Measurements , 2003 .

[54]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[55]  Ian Simmonds,et al.  Synoptic Activity in the Seas around Antarctica , 2003 .

[56]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[57]  Graeme L. Stephens,et al.  Retrieval of stratus cloud microphysical parameters using millimeter-wave radar and visible optical depth in preparation for CloudSat: 1. Algorithm formulation , 2001 .

[58]  William B. Rossow,et al.  Cloud Vertical Structure and Its Variations from a 20-Yr Global Rawinsonde Dataset , 2000 .

[59]  L. Schüller,et al.  Radiative Properties of Boundary Layer Clouds: Droplet Effective Radius versus Number Concentration , 2000 .

[60]  M. King,et al.  Cloud Retrieval Algorithms for MODIS : Optical Thickness , Effective Particle Radius , and Thermodynamic Phase , 2000 .

[61]  Norman G. Loeb,et al.  Inference of Marine Stratus Cloud Optical Depths from Satellite Measurements: Does 1D Theory Apply? , 1998 .

[62]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[63]  Roger Davies,et al.  Effect of cloud inhomogeneities on the solar zenith angle dependence of nadir reflectance , 1997 .

[64]  Roger Davies,et al.  Angular dependence of observed reflectances: A comparison with plane parallel theory , 1997 .

[65]  R. Davies,et al.  Observational evidence of plane parallel model biases: Apparent dependence of cloud optical depth on solar zenith angle , 1996 .

[66]  S. Klein,et al.  The Seasonal Cycle of Low Stratiform Clouds , 1993 .

[67]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[68]  A. Slingo A GCM Parameterization for the Shortwave Radiative Properties of Water Clouds , 1989 .

[69]  J. Foot,et al.  Some observations of the optical properties of clouds , 2006 .

[70]  J. Foot,et al.  Some observations of the optical properties of clouds. II: Cirrus , 1988 .

[71]  J. Curry Interactions among Turbulence, Radiation and Microphysics in Arctic Stratus Clouds , 1986 .

[72]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[73]  J. Slingo A cloud parametrization scheme derived from GATE data for use with a numerical model , 1980 .