Population Monte Carlo Algorithm in High Dimensions
暂无分享,去创建一个
[1] Jun S. Liu,et al. Monte Carlo strategies in scientific computing , 2001 .
[2] M. Pitt,et al. Filtering via Simulation: Auxiliary Particle Filters , 1999 .
[3] O. Cappé,et al. Population Monte Carlo , 2004 .
[4] N. Gordon,et al. Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .
[5] Jean-Michel Marin,et al. Convergence of Adaptive Sampling Schemes , 2004 .
[6] A. Gelman,et al. Weak convergence and optimal scaling of random walk Metropolis algorithms , 1997 .
[7] Jun S. Liu,et al. Sequential Monte Carlo methods for dynamic systems , 1997 .
[8] Gareth O. Roberts,et al. Examples of Adaptive MCMC , 2009 .
[9] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[10] N. Chopin. Central limit theorem for sequential Monte Carlo methods and its application to Bayesian inference , 2004, math/0508594.
[11] G. Roberts,et al. Optimal Scaling for Random Walk Metropolis on Spherically Constrained Target Densities , 2008 .
[12] Reuven Y. Rubinstein,et al. Simulation and the Monte Carlo Method , 1981 .
[13] R. Douc,et al. Minimum variance importance sampling via Population Monte Carlo , 2007 .
[14] David B. Dunson,et al. Bayesian Data Analysis , 2010 .
[15] J. Rosenthal,et al. Optimal scaling for various Metropolis-Hastings algorithms , 2001 .