The rank of diluted random graphs

We investigate the rank of the adjacency matrix of large diluted random graphs: for a sequence of graphs converging locally to a tree, we give new formulas for the asymptotic of the multiplicity of the eigenvalue 0. In particular, the result depends only on the limiting tree structure, showing that the normalized rank is 'continuous at infinity'. Our work also gives a new formula for the mass at zero of the spectral measure of a Galton-Watson tree. Our techniques of proofs borrow ideas from analysis of algorithms, random matrix theory, statistical physics and analysis of Schrödinger operators on trees.

[1]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[2]  Alan M. Frieze,et al.  Karp–Sipser on Random Graphs with a Fixed Degree Sequence , 2011, Combinatorics, Probability and Computing.

[3]  Marc Lelarge,et al.  Matchings on infinite graphs , 2011, 1102.0712.

[4]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[5]  Marc Lelarge,et al.  The rank of diluted random graphs. , 2009, 0907.4244.

[6]  S. Evans,et al.  Spectra of Large Random Trees , 2009, 0903.3589.

[7]  Marc Lelarge,et al.  Resolvent of large random graphs , 2007, Random Struct. Algorithms.

[8]  Kevin P. Costello,et al.  The rank of random graphs , 2006, Random Struct. Algorithms.

[9]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[10]  D. Aldous,et al.  Processes on Unimodular Random Networks , 2006, math/0603062.

[11]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[12]  M. Aizenman,et al.  Stability of the Absolutely Continuous Spectrum of Random Schrödinger Operators on Tree Graphs , 2005, math-ph/0502006.

[13]  Mariya Shcherbina,et al.  Eigenvalue distribution of large weighted random graphs , 2004 .

[14]  C. Villani Topics in Optimal Transportation , 2003 .

[15]  Martin E. Dyer,et al.  Random walks on the vertices of transportation polytopes with constant number of sources , 2003, SODA '03.

[16]  R. Kenyon Local statistics of lattice dimers , 2001, math/0105054.

[17]  I. Benjamini,et al.  Recurrence of Distributional Limits of Finite Planar Graphs , 2000, math/0011019.

[18]  M. Bauer,et al.  Exactly solvable model with two conductor-insulator transitions driven by impurities. , 2000, Physical review letters.

[19]  M. Bauer,et al.  On the kernel of tree incidence matrices , 2000, cond-mat/0003049.

[20]  B. Simon The Classical Moment Problem as a Self-Adjoint Finite Difference Operator , 1998, math-ph/9906008.

[21]  A. Klein Extended States in the Anderson Model on the Bethe Lattice , 1998 .

[22]  D. Cvetkovic,et al.  Spectra of Graphs: Theory and Applications , 1997 .

[23]  B. McKay The expected eigenvalue distribution of a large regular graph , 1981 .

[24]  Harry Kesten,et al.  Symmetric random walks on groups , 1959 .

[25]  J. Michael Steele,et al.  The Objective Method: Probabilistic Combinatorial Optimization and Local Weak Convergence , 2004 .

[26]  Richard M. Karp,et al.  Maximum Matchings in Sparse Random Graphs , 1981, FOCS 1981.

[27]  Michael Doob,et al.  Spectra of graphs , 1980 .

[28]  M. Reed Methods of Modern Mathematical Physics. I: Functional Analysis , 1972 .

[29]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[30]  D. G. Figueiredo,et al.  Topics in nonlinear functional analysis , 1967 .