Short Wave-Long Wave Interactions for Compressible Navier-Stokes Equations

We consider a model describing the short wave vs. long wave interactions where the short waves are governed by a nonlinear Schrodinger equation, the long waves are governed by the Navier–Stokes equations for a compressible isentropic fluid flow, and these two modes are coupled nonlinearly by interaction terms. Our model is motivated by the general approach introduced by Benney in [Stud. Appl. Math., 56 (1977), pp. 81–94] and follows the reasoning adopted for the several models proposed and analyzed by Dias, Figueira, and Frid in [Arch. Ration. Mech. Anal., 196 (2010), pp. 981–1010]. For the model proposed here we address the problem of the global existence and uniqueness of the solution in the one-dimensional case. We also discuss the problem of the convergence of the sequence of solutions when the viscosity and the interaction coefficient vanish, applying in this part a recent compactness framework developed by Chen and Perepelitsa [Comm. Pure Appl. Math., 63 (2010), pp. 1469–1504].

[1]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[2]  H. Frid,et al.  Vanishing Viscosity with Short Wave–Long Wave Interactions for Systems of Conservation Laws , 2010 .

[3]  Michael Westdickenberg,et al.  Finite energy solutions to the isentropic Euler equations with geometric effects , 2007, 0812.2688.

[4]  S. N. Antont︠s︡ev,et al.  Boundary Value Problems in Mechanics of Nonhomogeneous Fluids , 1990 .

[5]  T. Cazenave Semilinear Schrodinger Equations , 2003 .

[6]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[7]  B. Perthame,et al.  Kinetic formulation of the isentropic gas dynamics andp-systems , 1994 .

[8]  P. Souganidis,et al.  Existence and stability of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates , 1998 .

[9]  V. Shelukhin A shear flow problem for the compressible Navier-Stokes equations , 1998 .

[10]  J. Ball A version of the fundamental theorem for young measures , 1989 .

[11]  D. Hoff Global solutions of the equations of one-dimensional, compressible flow with large data and forces, and with differing end states , 1998 .

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[13]  Gui-Qiang G. Chen,et al.  Vanishing viscosity limit of the Navier‐Stokes equations to the euler equations for compressible fluid flow , 2009, 0910.2360.

[14]  Luc Tartar,et al.  Compensated compactness and applications to partial differential equations , 1979 .

[15]  F. Murat,et al.  Compacité par compensation , 1978 .

[16]  J. Nash,et al.  Le problème de Cauchy pour les équations différentielles d'un fluide général , 1962 .

[17]  Gui-Qiang G. Chen,et al.  Existence Theory for the Isentropic Euler Equations , 2003 .

[18]  D. J. Benney A General Theory for Interactions Between Short and Long Waves , 1977 .

[19]  Michael Westdickenberg,et al.  Convergence of Approximate Solutions of Conservation Laws , 2015, 1502.00798.

[20]  Giovanni Alberti,et al.  A new approach to variational problems with multiple scales , 2001 .

[21]  Jean Bourgain,et al.  On nonlinear Schrödinger equations , 1998 .

[22]  J. Dieudonné,et al.  Problèmes aux limites , 2003 .