The nature of halogen...halogen interactions: a model derived from experimental charge-density analysis.

Slightly attractive: The attractive and anisotropic nature of the ClCl interaction in C(6)Cl(6) is experimentally demonstrated from an expansion of the electron density rho(r) around the chlorine nuclei. The interaction is explained in a model in which there is a bonding attraction involving electron-deficient (see picture, blue) and electron-rich (red) regions of adjacent Cl atoms.

[1]  Lee Brammer,et al.  Combining metals with halogen bonds , 2008 .

[2]  A. Gavezzotti Non-conventional bonding between organic molecules. The ‘halogen bond’ in crystalline systems , 2008 .

[3]  C. Lecomte,et al.  On the accurate estimation of intermolecular interactions and charge transfer: the case of TTF-CA. , 2007, Faraday discussions.

[4]  J. Nicoud,et al.  Using halogen···halogen interactions to direct noncentrosymmetric crystal packing in dipolar organic molecules , 2006 .

[5]  K. A. Padmanabhan,et al.  Isostructurality, polymorphism and mechanical properties of some hexahalogenated benzenes: the nature of halogen...halogen interactions. , 2006, Chemistry.

[6]  Claude Lecomte,et al.  Advances in protein and small-molecule charge-density refinement methods using MoPro , 2005 .

[7]  L. Reddy,et al.  Halogen Trimer-Mediated Hexagonal Host Framework of 2,4,6-Tris(4-halophenoxy)-1,3,5-triazine. Supramolecular Isomerism from Hexagonal Channel (X = Cl, Br) to Cage Structure (X = I) , 2005 .

[8]  T. Pilati,et al.  The experimental electron density distribution in the complex of (E)-1,2-bis(4-pyridyl)ethylene with 1,4-diiodotetrafluorobenzene at 90 K. , 2003, Chemistry.

[9]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[10]  C. Marjo,et al.  Synthesis of a new lattice inclusion host belonging to the tetrahalo aryl family , 2001 .

[11]  Claude Lecomte,et al.  Refinement of proteins at subatomic resolution with MOPRO , 2001 .

[12]  P. M. Zorky,et al.  Analysis of molecular Cl⋯Cl interactions in pentachlorobezene and hexachlorobenzene crystals , 2000 .

[13]  C. Lecomte,et al.  Topological analysis of the electron density in hydrogen bonds. , 1999, Acta crystallographica. Section B, Structural science.

[14]  G. Desiraju,et al.  Crystal Engineering: Some Further Strategies , 1998 .

[15]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[16]  P. F. Zhou,et al.  Topological definition of crystal structure: determination of the bonded interactions in solid molecular chlorine , 1995 .

[17]  A. Stone,et al.  The Nature of -Cl.cntdot..cntdot..cntdot.Cl- Intermolecular Interactions , 1994 .

[18]  Báder Principle of stationary action and the definition of a proper open system. , 1994, Physical review. B, Condensed matter.

[19]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[20]  R. Bader Atoms in molecules , 1990 .

[21]  R. Bader Atoms in molecules : a quantum theory , 1990 .

[22]  G. Desiraju,et al.  The nature of halogen.cntdot..cntdot..cntdot.halogen interactions: are short halogen contacts due to specific attractive forces or due to close packing of nonspherical atoms? , 1989 .

[23]  Gautam R. Desiraju,et al.  Crystal engineering : the design of organic solids , 1989 .

[24]  R. Bader,et al.  A physical basis for the VSEPR model of molecular geometry , 1988 .

[25]  R. Blessing Data Reduction and Error Analysis for Accurate Single Crystal Diffraction Intensities , 1987 .

[26]  Gautam R. Desiraju,et al.  The role of Cl.cntdot..cntdot..cntdot.Cl and C-H.cntdot..cntdot..cntdot.O interactions in the crystal engineering of 4-.ANG. short-axis structures , 1986 .

[27]  D. Williams,et al.  Transferability of nonbonded Cl⋯Cl potential energy function to crystalline chlorine , 1985 .

[28]  G. DeTitta ABSORB: An absorption correction program for crystals enclosed in capillaries with trapped mother liquor , 1985 .

[29]  W. Wong-Ng,et al.  Potential energy interactions in solid dichlorine , 1979 .

[30]  W. Wong-Ng,et al.  Anisotropic atom–atom forces and the space group of solid chlorine , 1979, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[31]  E. Stevens Experimental electron density distribution of molecular chlorine , 1979 .

[32]  Philip Coppens,et al.  Testing aspherical atom refinements on small-molecule data sets , 1978 .

[33]  A. I. Kitajgorodskij General View on Molecular Packing , 1970 .

[34]  Donald E. Williams Nonbonded Potential Parameters Derived from Crystalline Hydrocarbons , 1967 .

[35]  G. A. Jeffrey,et al.  A nuclear quadrupole resonance and X‐ray study of the crystal structure of 2,5‐dichloroaniline , 1963 .

[36]  K. Yamasaki The Crystal Structure and Lattice Energy of Halogen Molecules , 1962 .

[37]  D. Cruickshank The accuracy of electron‐density maps in X‐ray analysis with special reference to dibenzyl , 1949 .