Examples of computer experimentation in algebraic combinatorics
暂无分享,去创建一个
Mikhail H. Klin | Andrew J. Woldar | Christian Pech | Sven Reichard | Matan Ziv-Av | A. Woldar | M. Klin | Matan Ziv-Av | Sven Reichard | Christian Pech
[1] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[3] Kurt Schneider,et al. Solutions of Problems , 2009 .
[4] E. Bannai,et al. Algebraic Combinatorics I: Association Schemes , 1984 .
[5] Dragan Marusic,et al. The genus of the GRAY graph is 7 , 2005, Eur. J. Comb..
[6] Mikhail E. Muzychuk,et al. Association schemes on 28 points as mergings of a half-homogeneous coherent configuration , 2007, Eur. J. Comb..
[7] Reinhard Laue,et al. DISCRETA : a tool for constructing t-designs , 1998 .
[8] Jozef Širáň,et al. Search for properties of the missing Moore graph , 2010 .
[9] Gottfried Tinhofer,et al. Forestal algebras and algebraic forests (on a new class of weakly compact graphs) , 2000, Discret. Math..
[10] I. Bouwer. Vertex and Edge Transitive, but not 1-Transitive, Graphs , 1970, Canadian Mathematical Bulletin.
[11] B. Weisfeiler. On construction and identification of graphs , 1976 .
[12] Reinhard Pöschel,et al. Angewandte Algebra für Mathematiker und Informatiker : Einführung in gruppentheoretisch-kombinatorische Methoden , 1988 .
[13] Tomaz Pisanski,et al. The Gray graph revisited , 2000 .
[14] Mikhail Klin,et al. Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach , 2005, Electron. Notes Discret. Math..
[15] D. G. Higman,et al. Strongly Regular Designs and Coherent Configurations of Type [3 23] , 1988, Eur. J. Comb..
[16] P. Dembowski. Finite geometries , 1997 .
[17] Tomaz Pisanski,et al. Semisymmetric graphs from polytopes , 2007, J. Comb. Theory, Ser. A.
[18] J. H. Lint,et al. Designs, graphs, codes, and their links , 1991 .
[19] Mikhail Klin,et al. Higmanian rank-5 association schemes on 40 points , 2009 .
[20] Mikhail H. Klin,et al. Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices , 2003, Electron. J. Comb..
[21] T. Rudolph. Constructing physically intuitive graph invariants , 2002, quant-ph/0206068.
[22] Anne Penfold Street,et al. Partitioning sets of quadruples into designs I , 1989, Discret. Math..
[23] M. Klin,et al. Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. III. Graph Invariants and , 1999 .
[24] Felix Lazebnik,et al. An infinite series of regular edge‐ but not vertex‐transitive graphs , 2002, J. Graph Theory.
[25] Derek F. Holt,et al. A graph which is edge transitive but not arc transitive , 1981, J. Graph Theory.
[26] J. A.,et al. On Moore Graphs with Diameters 2 and 3 , 2022 .
[27] Russell W. Myers,et al. 1-homogeneous Graphs , 1985, Discret. Math..
[28] H. Wielandt. Zur Theorie der einfach transitiven Permutationsgruppen , 1936 .
[29] Mikhail Klin,et al. Siamese Combinatorial Objects via Computer Algebra Experimentation , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.
[30] Mikhail E. Muzychuk,et al. Association schemes generated by a non-symmetric relation of valency 2 , 2002, Discret. Math..
[31] I. Bouwer. An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.
[32] Tomaÿz Pisanski. YET ANOTHER LOOK AT THE GRAY GRAPH , 2007 .
[33] P. J. Cameron,et al. Partial Geometries , 2010 .
[34] M. Klin,et al. Cellular Rings and Groups of Automorphisms of Graphs , 1994 .
[35] A. Hora,et al. Distance-Regular Graphs , 2007 .
[36] Aiso Heinze. Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomic schemes , 2001 .
[37] Andries E. Brouwer,et al. Ovoids and fans in the generalized quadrangle Q(4, 2) , 1990 .
[38] Alexander Rosa,et al. A New Strongly Regular Graph , 1985, J. Comb. Theory, Ser. A.
[39] M. Behzad. A CHARACTERIZATION OF TOTAL GRAPHS , 1970 .
[40] Anne Penfold Street,et al. Partitioning sets of quadruples into designs III , 1991, Discret. Math..
[41] Dragan Marušič. Constructing cubic edge- but not vertex-transitive graphs , 2000 .
[42] Mikhail Klin,et al. Loops, Latin Squares and Strongly Regular Graphs: An Algorithmic Approach via Algebraic Combinatorics , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.
[43] Mikhail H. Klin,et al. A Root Graph that is Locally the Line Graph of the Peterson Graph , 2003, Discret. Math..
[44] Peter G. Doyle. A 27-vertex graph that is vertex-transitive and edge-transitive but not l-transitive , 1985 .
[45] Dmitrii V. Pasechnik. Algebraic combinatorics in mathematical chemistry II. Program implementation of the Weisfeiler−Leman algorithm , 1997 .
[46] D. G. Higman. Coherent configurations , 1975 .
[47] B. Alspach,et al. Constructing graphs which are ½-transitive , 1994 .
[48] Ilia Ponomarenko,et al. Non-Isomorphic Graphs with Cospectral Symmetric Powers , 2009, Electron. J. Comb..
[49] W. T. Tutte. Connectivity in graphs , 1966 .
[50] G. Butler,et al. The transitive groups of degree up to eleven , 1983 .
[51] Andries E. Brouwer,et al. Strongly Regular Graphs , 2022 .
[52] Mingyao Xu. Half-Transitive Graphs of Prime-Cube Order , 1992 .
[53] Steve Wilson,et al. A worthy family of semisymmetric graphs , 2003, Discret. Math..
[54] Lin Zhang,et al. An infinite family of semisymmetric graphs constructed from affine geometries , 2003, Eur. J. Comb..
[55] Mikhail H. Klin,et al. For computations with coherent configurations , 1991, ISSAC '91.
[56] I. Z. Bouwer. On edge but not vertex transitive regular graphs , 1972 .
[57] Matan Ziv-Av,et al. Computer Aided Investigation of Total Graph Coherent Configurations for Two Infinite Families of Classical Strongly Regular Graphs , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.