Examples of computer experimentation in algebraic combinatorics

We introduce certain paradigms for procuring computer-free explanations from data acquired via computer algebra experimentation. Our established context is the field of algebraic combinatorics, with special focus on coherent configurations and association schemes. All results presented here were obtained by the authors with the aid of computer algebra systems, especially COCO and GAP. A number of examples are explored, in particular of objects on 28, 50, 63, and 210 points. In a few cases, initial experimental data pointed to appropriate theoretical generalizations that yielded an infinite class of related combinatorial structures. Special attention is paid to algebraic automorphisms (of a coherent algebra), a fairly new concept that has already proved to have far-reaching consequences. Finally, we focus on the Doyle-Holt graph on 27 vertices, and some of its related structures.

[1]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[3]  Kurt Schneider,et al.  Solutions of Problems , 2009 .

[4]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[5]  Dragan Marusic,et al.  The genus of the GRAY graph is 7 , 2005, Eur. J. Comb..

[6]  Mikhail E. Muzychuk,et al.  Association schemes on 28 points as mergings of a half-homogeneous coherent configuration , 2007, Eur. J. Comb..

[7]  Reinhard Laue,et al.  DISCRETA : a tool for constructing t-designs , 1998 .

[8]  Jozef Širáň,et al.  Search for properties of the missing Moore graph , 2010 .

[9]  Gottfried Tinhofer,et al.  Forestal algebras and algebraic forests (on a new class of weakly compact graphs) , 2000, Discret. Math..

[10]  I. Bouwer Vertex and Edge Transitive, but not 1-Transitive, Graphs , 1970, Canadian Mathematical Bulletin.

[11]  B. Weisfeiler On construction and identification of graphs , 1976 .

[12]  Reinhard Pöschel,et al.  Angewandte Algebra für Mathematiker und Informatiker : Einführung in gruppentheoretisch-kombinatorische Methoden , 1988 .

[13]  Tomaz Pisanski,et al.  The Gray graph revisited , 2000 .

[14]  Mikhail Klin,et al.  Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach , 2005, Electron. Notes Discret. Math..

[15]  D. G. Higman,et al.  Strongly Regular Designs and Coherent Configurations of Type [3 23] , 1988, Eur. J. Comb..

[16]  P. Dembowski Finite geometries , 1997 .

[17]  Tomaz Pisanski,et al.  Semisymmetric graphs from polytopes , 2007, J. Comb. Theory, Ser. A.

[18]  J. H. Lint,et al.  Designs, graphs, codes, and their links , 1991 .

[19]  Mikhail Klin,et al.  Higmanian rank-5 association schemes on 40 points , 2009 .

[20]  Mikhail H. Klin,et al.  Switching of Edges in Strongly Regular Graphs I: A Family of Partial Difference Sets on 100 Vertices , 2003, Electron. J. Comb..

[21]  T. Rudolph Constructing physically intuitive graph invariants , 2002, quant-ph/0206068.

[22]  Anne Penfold Street,et al.  Partitioning sets of quadruples into designs I , 1989, Discret. Math..

[23]  M. Klin,et al.  Algebraic Combinatorics in Mathematical Chemistry. Methods and Algorithms. III. Graph Invariants and , 1999 .

[24]  Felix Lazebnik,et al.  An infinite series of regular edge‐ but not vertex‐transitive graphs , 2002, J. Graph Theory.

[25]  Derek F. Holt,et al.  A graph which is edge transitive but not arc transitive , 1981, J. Graph Theory.

[26]  J. A.,et al.  On Moore Graphs with Diameters 2 and 3 , 2022 .

[27]  Russell W. Myers,et al.  1-homogeneous Graphs , 1985, Discret. Math..

[28]  H. Wielandt Zur Theorie der einfach transitiven Permutationsgruppen , 1936 .

[29]  Mikhail Klin,et al.  Siamese Combinatorial Objects via Computer Algebra Experimentation , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.

[30]  Mikhail E. Muzychuk,et al.  Association schemes generated by a non-symmetric relation of valency 2 , 2002, Discret. Math..

[31]  I. Bouwer An Edge but not Vertex Transitive Cubic Graph* , 1968, Canadian Mathematical Bulletin.

[32]  Tomaÿz Pisanski YET ANOTHER LOOK AT THE GRAY GRAPH , 2007 .

[33]  P. J. Cameron,et al.  Partial Geometries , 2010 .

[34]  M. Klin,et al.  Cellular Rings and Groups of Automorphisms of Graphs , 1994 .

[35]  A. Hora,et al.  Distance-Regular Graphs , 2007 .

[36]  Aiso Heinze Applications of Schur rings in algebraic combinatorics: graphs, partial difference sets and cyclotomic schemes , 2001 .

[37]  Andries E. Brouwer,et al.  Ovoids and fans in the generalized quadrangle Q(4, 2) , 1990 .

[38]  Alexander Rosa,et al.  A New Strongly Regular Graph , 1985, J. Comb. Theory, Ser. A.

[39]  M. Behzad A CHARACTERIZATION OF TOTAL GRAPHS , 1970 .

[40]  Anne Penfold Street,et al.  Partitioning sets of quadruples into designs III , 1991, Discret. Math..

[41]  Dragan Marušič Constructing cubic edge- but not vertex-transitive graphs , 2000 .

[42]  Mikhail Klin,et al.  Loops, Latin Squares and Strongly Regular Graphs: An Algorithmic Approach via Algebraic Combinatorics , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.

[43]  Mikhail H. Klin,et al.  A Root Graph that is Locally the Line Graph of the Peterson Graph , 2003, Discret. Math..

[44]  Peter G. Doyle A 27-vertex graph that is vertex-transitive and edge-transitive but not l-transitive , 1985 .

[45]  Dmitrii V. Pasechnik Algebraic combinatorics in mathematical chemistry II. Program implementation of the Weisfeiler−Leman algorithm , 1997 .

[46]  D. G. Higman Coherent configurations , 1975 .

[47]  B. Alspach,et al.  Constructing graphs which are ½-transitive , 1994 .

[48]  Ilia Ponomarenko,et al.  Non-Isomorphic Graphs with Cospectral Symmetric Powers , 2009, Electron. J. Comb..

[49]  W. T. Tutte Connectivity in graphs , 1966 .

[50]  G. Butler,et al.  The transitive groups of degree up to eleven , 1983 .

[51]  Andries E. Brouwer,et al.  Strongly Regular Graphs , 2022 .

[52]  Mingyao Xu Half-Transitive Graphs of Prime-Cube Order , 1992 .

[53]  Steve Wilson,et al.  A worthy family of semisymmetric graphs , 2003, Discret. Math..

[54]  Lin Zhang,et al.  An infinite family of semisymmetric graphs constructed from affine geometries , 2003, Eur. J. Comb..

[55]  Mikhail H. Klin,et al.  For computations with coherent configurations , 1991, ISSAC '91.

[56]  I. Z. Bouwer On edge but not vertex transitive regular graphs , 1972 .

[57]  Matan Ziv-Av,et al.  Computer Aided Investigation of Total Graph Coherent Configurations for Two Infinite Families of Classical Strongly Regular Graphs , 2009, Algorithmic Algebraic Combinatorics and Gröbner Bases.